This paper revisits the problem of repairing and querying inconsistent databases equipped with universal constraints. We adopt symmetric difference repairs, in which both deletions and additions of facts can be used to restore consistency, and suppose that preferred repair actions are specified via a binary priority relation over (negated) facts. Our first contribution is to show how existing notions of optimal repairs, defined for simpler denial constraints and repairs solely based on fact deletion, can be suitably extended to our richer setting. We next study the computational properties of the resulting repair notions, in particular, the data complexity of repair checking and inconsistency-tolerant query answering. Finally, we clarify the relationship between optimal repairs of prioritized databases and repair notions introduced in the framework of active integrity constraints. In particular, we show that Pareto-optimal repairs in our setting correspond to founded, grounded and justified repairs w.r.t. the active integrity constraints obtained by translating the prioritized database. Our study also yields useful insights into the behavior of active integrity constraints.
In this study, we investigate the construction of quantum CSS duadic codes with dimensions greater than one. We introduce a method for extending smaller splittings of quantum duadic codes to create larger, potentially degenerate quantum duadic codes. Furthermore, we present a technique for computing or bounding the minimum distances of quantum codes constructed through this approach. Additionally, we introduce quantum CSS triadic codes, a family of quantum codes with a rate of at least $\frac{1}{3}$.
Pioneer researches recognize evidences as crucial elements in fake news detection apart from patterns. Existing evidence-aware methods either require laborious pre-processing procedures to assure relevant and high-quality evidence data, or incorporate the entire spectrum of available evidences in all news cases, regardless of the quality and quantity of the retrieved data. In this paper, we propose an approach named \textbf{SEE} that retrieves useful information from web-searched annotation-free evidences with an early-termination mechanism. The proposed SEE is constructed by three main phases: \textbf{S}earching online materials using the news as a query and directly using their titles as evidences without any annotating or filtering procedure, sequentially \textbf{E}xamining the news alongside with each piece of evidence via attention mechanisms to produce new hidden states with retrieved information, and allowing \textbf{E}arly-termination within the examining loop by assessing whether there is adequate confidence for producing a correct prediction. We have conducted extensive experiments on datasets with unprocessed evidences, i.e., Weibo21, GossipCop, and pre-processed evidences, namely Snopes and PolitiFact. The experimental results demonstrate that the proposed method outperforms state-of-the-art approaches.
Existing committee-based Byzantine state machine replication (SMR) protocols, typically deployed in production blockchains, face a clear trade-off: (1) they either achieve linear communication cost in the happy path, but sacrifice liveness during periods of asynchrony, or (2) they are robust (progress with probability one) but pay quadratic communication cost. We believe this trade-off is unwarranted since existing linear protocols still have asymptotic quadratic cost in the worst case. We design Ditto, a Byzantine SMR protocol that enjoys the best of both worlds: optimal communication on and off the happy path (linear and quadratic, respectively) and progress guarantee under asynchrony and DDoS attacks. We achieve this by replacing the view-synchronization of partially synchronous protocols with an asynchronous fallback mechanism at no extra asymptotic cost. Specifically, we start from HotStuff, a state-of-the-art linear protocol, and gradually build Ditto. As a separate contribution and an intermediate step, we design a 2-chain version of HotStuff, Jolteon, which leverages a quadratic view-change mechanism to reduce the latency of the standard 3-chain HotStuff. We implement and experimentally evaluate all our systems. Notably, Jolteon's commit latency outperforms HotStuff by 200-300ms with varying system size. Additionally, Ditto adapts to the network and provides better performance than Jolteon under faulty conditions and better performance than VABA (a state-of-the-art asynchronous protocol) under faultless conditions. This proves our case that breaking the robustness-efficiency trade-off is in the realm of practicality.
In this paper, we propose a novel transmissive reconfigurable intelligent surface transceiver-enhanced robust and secure integrated sensing and communication network. A time-division sensing communication mechanism is designed for the scenario, which enables communication and sensing to share wireless resources. To address the interference management problem and hinder eavesdropping, we implement rate-splitting multiple access (RSMA), where the common stream is designed as a useful signal and an artificial noise, while taking into account the imperfect channel state information and modeling the channel for the illegal users in a fine-grained manner as well as giving an upper bound on the error. We introduce the secrecy outage probability and construct an optimization problem with secrecy sum-rate as the objective functions to optimize the common stream beamforming matrix, the private stream beamforming matrix and the timeslot duration variable. Due to the coupling of the optimization variables and the infinity of the error set, the proposed problem is a nonconvex optimization problem that cannot be solved directly. In order to address the above challenges, the block coordinate descent-based second-order cone programming algorithm is used to decouple the optimization variables and solving the problem. Specifically, the problem is decoupled into two subproblems concerning the common stream beamforming matrix, the private stream beamforming matrix, and the timeslot duration variable, which are solved by alternating optimization until convergence is reached. To solve the problem, S-procedure, Bernstein's inequality and successive convex approximation are employed to deal with the objective function and non-convex constraints. Numerical simulation results verify the superiority of the proposed scheme in improving the secrecy energy efficiency and the Cram\'{e}r-Rao boundary.
Ensuring privacy and protection from issuer corruption in digital identity systems is crucial. We propose a method for selective disclosure and privacy-preserving revocation of digital credentials using second-order Elliptic Curves and Boneh-Lynn-Shacham (BLS) signatures. We make holders able to present proofs of possession of selected credentials without disclosing them, and we protect their presentations from replay attacks. Revocations may be distributed among multiple revocation issuers using publicly verifiable secret sharing (PVSS) and activated only by configurable consensus, ensuring robust protection against issuer corruption. Our system's unique design enables extremely fast revocation checks, even with large revocation lists, leveraging optimized hash map lookups.
This paper proposes a composite inner-product computation unit based on left-to-right (LR) arithmetic for the acceleration of convolution neural networks (CNN) on hardware. The efficacy of the proposed L2R-CIPU method has been shown on the VGG-16 network, and assessment is done on various performance metrics. The L2R-CIPU design achieves 1.06x to 6.22x greater performance, 4.8x to 15x more TOPS/W, and 4.51x to 53.45x higher TOPS/mm2 than prior architectures.
Causal inference has shown potential in enhancing the predictive accuracy, fairness, robustness, and explainability of Natural Language Processing (NLP) models by capturing causal relationships among variables. The emergence of generative Large Language Models (LLMs) has significantly impacted various NLP domains, particularly through their advanced reasoning capabilities. This survey focuses on evaluating and improving LLMs from a causal view in the following areas: understanding and improving the LLMs' reasoning capacity, addressing fairness and safety issues in LLMs, complementing LLMs with explanations, and handling multimodality. Meanwhile, LLMs' strong reasoning capacities can in turn contribute to the field of causal inference by aiding causal relationship discovery and causal effect estimations. This review explores the interplay between causal inference frameworks and LLMs from both perspectives, emphasizing their collective potential to further the development of more advanced and equitable artificial intelligence systems.
The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.
The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.