Although deep neural networks have achieved remarkable results for the task of semantic segmentation, they usually fail to generalize towards new domains, especially when performing synthetic-to-real adaptation. Such domain shift is particularly noticeable along class boundaries, invalidating one of the main goals of semantic segmentation that consists in obtaining sharp segmentation masks. In this work, we specifically address this core problem in the context of Unsupervised Domain Adaptation and present a novel low-level adaptation strategy that allows us to obtain sharp predictions. Moreover, inspired by recent self-training techniques, we introduce an effective data augmentation that alleviates the noise typically present at semantic boundaries when employing pseudo-labels for self-training. Our contributions can be easily integrated into other popular adaptation frameworks, and extensive experiments show that they effectively improve performance along class boundaries.
Deep learning models usually suffer from domain shift issues, where models trained on one source domain do not generalize well to other unseen domains. In this work, we investigate the single-source domain generalization problem: training a deep network that is robust to unseen domains, under the condition that training data is only available from one source domain, which is common in medical imaging applications. We tackle this problem in the context of cross-domain medical image segmentation. Under this scenario, domain shifts are mainly caused by different acquisition processes. We propose a simple causality-inspired data augmentation approach to expose a segmentation model to synthesized domain-shifted training examples. Specifically, 1) to make the deep model robust to discrepancies in image intensities and textures, we employ a family of randomly-weighted shallow networks. They augment training images using diverse appearance transformations. 2) Further we show that spurious correlations among objects in an image are detrimental to domain robustness. These correlations might be taken by the network as domain-specific clues for making predictions, and they may break on unseen domains. We remove these spurious correlations via causal intervention. This is achieved by resampling the appearances of potentially correlated objects independently. The proposed approach is validated on three cross-domain segmentation tasks: cross-modality (CT-MRI) abdominal image segmentation, cross-sequence (bSSFP-LGE) cardiac MRI segmentation, and cross-center prostate MRI segmentation. The proposed approach yields consistent performance gains compared with competitive methods when tested on unseen domains.
This paper challenges the cross-domain semantic segmentation task, aiming to improve the segmentation accuracy on the unlabeled target domain without incurring additional annotation. Using the pseudo-label-based unsupervised domain adaptation (UDA) pipeline, we propose a novel and effective Multiple Fusion Adaptation (MFA) method. MFA basically considers three parallel information fusion strategies, i.e., the cross-model fusion, temporal fusion and a novel online-offline pseudo label fusion. Specifically, the online-offline pseudo label fusion encourages the adaptive training to pay additional attention to difficult regions that are easily ignored by offline pseudo labels, therefore retaining more informative details. While the other two fusion strategies may look standard, MFA pays significant efforts to raise the efficiency and effectiveness for integration, and succeeds in injecting all the three strategies into a unified framework. Experiments on two widely used benchmarks, i.e., GTA5-to-Cityscapes and SYNTHIA-to-Cityscapes, show that our method significantly improves the semantic segmentation adaptation, and sets up new state of the art (58.2% and 62.5% mIoU, respectively). The code will be available at //github.com/KaiiZhang/MFA.
Due to the difficulty of obtaining ground-truth labels, learning from virtual-world datasets is of great interest for real-world applications like semantic segmentation. From domain adaptation perspective, the key challenge is to learn domain-agnostic representation of the inputs in order to benefit from virtual data. In this paper, we propose a novel trident-like architecture that enforces a shared feature encoder to satisfy confrontational source and target constraints simultaneously, thus learning a domain-invariant feature space. Moreover, we also introduce a novel training pipeline enabling self-induced cross-domain data augmentation during the forward pass. This contributes to a further reduction of the domain gap. Combined with a self-training process, we obtain state-of-the-art results on benchmark datasets (e.g. GTA5 or Synthia to Cityscapes adaptation). Code and pre-trained models are available at //github.com/HMRC-AEL/TridentAdapt
Due to the limited and even imbalanced data, semi-supervised semantic segmentation tends to have poor performance on some certain categories, e.g., tailed categories in Cityscapes dataset which exhibits a long-tailed label distribution. Existing approaches almost all neglect this problem, and treat categories equally. Some popular approaches such as consistency regularization or pseudo-labeling may even harm the learning of under-performing categories, that the predictions or pseudo labels of these categories could be too inaccurate to guide the learning on the unlabeled data. In this paper, we look into this problem, and propose a novel framework for semi-supervised semantic segmentation, named adaptive equalization learning (AEL). AEL adaptively balances the training of well and badly performed categories, with a confidence bank to dynamically track category-wise performance during training. The confidence bank is leveraged as an indicator to tilt training towards under-performing categories, instantiated in three strategies: 1) adaptive Copy-Paste and CutMix data augmentation approaches which give more chance for under-performing categories to be copied or cut; 2) an adaptive data sampling approach to encourage pixels from under-performing category to be sampled; 3) a simple yet effective re-weighting method to alleviate the training noise raised by pseudo-labeling. Experimentally, AEL outperforms the state-of-the-art methods by a large margin on the Cityscapes and Pascal VOC benchmarks under various data partition protocols. Code is available at //github.com/hzhupku/SemiSeg-AEL
In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them. However, the trained model cannot produce a highly discriminative feature representation for the target domain because the training data is dominated by labeled samples from the source domain. This could lead to disconnection between the labeled and unlabeled target samples as well as misalignment between unlabeled target samples and the source domain. In this paper, we propose a novel approach called Cross-domain Adaptive Clustering to address this problem. To achieve both inter-domain and intra-domain adaptation, we first introduce an adversarial adaptive clustering loss to group features of unlabeled target data into clusters and perform cluster-wise feature alignment across the source and target domains. We further apply pseudo labeling to unlabeled samples in the target domain and retain pseudo-labels with high confidence. Pseudo labeling expands the number of ``labeled" samples in each class in the target domain, and thus produces a more robust and powerful cluster core for each class to facilitate adversarial learning. Extensive experiments on benchmark datasets, including DomainNet, Office-Home and Office, demonstrate that our proposed approach achieves the state-of-the-art performance in semi-supervised domain adaptation.
In this paper, we tackle the unsupervised domain adaptation (UDA) for semantic segmentation, which aims to segment the unlabeled real data using labeled synthetic data. The main problem of UDA for semantic segmentation relies on reducing the domain gap between the real image and synthetic image. To solve this problem, we focused on separating information in an image into content and style. Here, only the content has cues for semantic segmentation, and the style makes the domain gap. Thus, precise separation of content and style in an image leads to effect as supervision of real data even when learning with synthetic data. To make the best of this effect, we propose a zero-style loss. Even though we perfectly extract content for semantic segmentation in the real domain, another main challenge, the class imbalance problem, still exists in UDA for semantic segmentation. We address this problem by transferring the contents of tail classes from synthetic to real domain. Experimental results show that the proposed method achieves the state-of-the-art performance in semantic segmentation on the major two UDA settings.
Adapting semantic segmentation models to new domains is an important but challenging problem. Recently enlightening progress has been made, but the performance of existing methods are unsatisfactory on real datasets where the new target domain comprises of heterogeneous sub-domains (e.g., diverse weather characteristics). We point out that carefully reasoning about the multiple modalities in the target domain can improve the robustness of adaptation models. To this end, we propose a condition-guided adaptation framework that is empowered by a special attentive progressive adversarial training (APAT) mechanism and a novel self-training policy. The APAT strategy progressively performs condition-specific alignment and attentive global feature matching. The new self-training scheme exploits the adversarial ambivalences of easy and hard adaptation regions and the correlations among target sub-domains effectively. We evaluate our method (DCAA) on various adaptation scenarios where the target images vary in weather conditions. The comparisons against baselines and the state-of-the-art approaches demonstrate the superiority of DCAA over the competitors.
Despite the recent progress of fully-supervised action segmentation techniques, the performance is still not fully satisfactory. One main challenge is the problem of spatiotemporal variations (e.g. different people may perform the same activity in various ways). Therefore, we exploit unlabeled videos to address this problem by reformulating the action segmentation task as a cross-domain problem with domain discrepancy caused by spatio-temporal variations. To reduce the discrepancy, we propose Self-Supervised Temporal Domain Adaptation (SSTDA), which contains two self-supervised auxiliary tasks (binary and sequential domain prediction) to jointly align cross-domain feature spaces embedded with local and global temporal dynamics, achieving better performance than other Domain Adaptation (DA) approaches. On three challenging benchmark datasets (GTEA, 50Salads, and Breakfast), SSTDA outperforms the current state-of-the-art method by large margins (e.g. for the F1@25 score, from 59.6% to 69.1% on Breakfast, from 73.4% to 81.5% on 50Salads, and from 83.6% to 89.1% on GTEA), and requires only 65% of the labeled training data for comparable performance, demonstrating the usefulness of adapting to unlabeled target videos across variations. The source code is available at //github.com/cmhungsteve/SSTDA.
We consider the problem of unsupervised domain adaptation for semantic segmentation by easing the domain shift between the source domain (synthetic data) and the target domain (real data) in this work. State-of-the-art approaches prove that performing semantic-level alignment is helpful in tackling the domain shift issue. Based on the observation that stuff categories usually share similar appearances across images of different domains while things (i.e. object instances) have much larger differences, we propose to improve the semantic-level alignment with different strategies for stuff regions and for things: 1) for the stuff categories, we generate feature representation for each class and conduct the alignment operation from the target domain to the source domain; 2) for the thing categories, we generate feature representation for each individual instance and encourage the instance in the target domain to align with the most similar one in the source domain. In this way, the individual differences within thing categories will also be considered to alleviate over-alignment. In addition to our proposed method, we further reveal the reason why the current adversarial loss is often unstable in minimizing the distribution discrepancy and show that our method can help ease this issue by minimizing the most similar stuff and instance features between the source and the target domains. We conduct extensive experiments in two unsupervised domain adaptation tasks, i.e. GTA5 to Cityscapes and SYNTHIA to Cityscapes, and achieve the new state-of-the-art segmentation accuracy.
Recent works showed that Generative Adversarial Networks (GANs) can be successfully applied in unsupervised domain adaptation, where, given a labeled source dataset and an unlabeled target dataset, the goal is to train powerful classifiers for the target samples. In particular, it was shown that a GAN objective function can be used to learn target features indistinguishable from the source ones. In this work, we extend this framework by (i) forcing the learned feature extractor to be domain-invariant, and (ii) training it through data augmentation in the feature space, namely performing feature augmentation. While data augmentation in the image space is a well established technique in deep learning, feature augmentation has not yet received the same level of attention. We accomplish it by means of a feature generator trained by playing the GAN minimax game against source features. Results show that both enforcing domain-invariance and performing feature augmentation lead to superior or comparable performance to state-of-the-art results in several unsupervised domain adaptation benchmarks.