亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A theoretical particle-number conserving quantum field theory based on the concept of imaginary time is presented and applied to the scenario of a coherent atomic laser field at ultra-cold temperatures. The proposed theoretical model describes the analytical derivation of the frequency comb spectrum for an atomic laser realized from modeling a coherent atomic beam of condensate and non-condensate quantum field components released from a trapped Bose-Einstein condensate at a given repetition phase and frequency. The condensate part of the atomic vapor is assumed to be subjected to thermal noise induced by the temperature of the surrounding thermal atomic cloud. This new quantum approach uses time periodicity and an orthogonal decomposition of the quantum field in a complex-valued quantum field representation to derive and model the quantum field's forward- and backward-propagating components as a standing wave field in the same unique time and temperature domain without quantitative singularities at finite temperatures. The complex-valued atom laser field, the resulting frequency comb, and the repetition frequency distribution with the varying shape of envelopes are numerically monitored within a Monte-Carlo sampling method, as a function of temperature and trap frequency of the external confinement.

相關內容

GitHub 發布的文本編輯器。

The Merriman-Bence-Osher threshold dynamics method is an efficient algorithm to simulate the motion by mean curvature, in which two steps of convolution with diffusion kernel and thresholding alternate. It has the advantages of being easy to implement and with high efficiency. In this paper, we propose an efficient threshold dynamics method for dislocation dynamics in a slip plane. We show that this proposed threshold dislocation dynamics method is able to give correct two leading orders in dislocation velocity, including both the $O(\log \varepsilon)$ local curvature force and the $O(1)$ nonlocal force due to the long-range stress field generated by the dislocations, where $\varepsilon$ is the dislocation core size. This is different from the available threshold dynamics methods in the literature which only give the leading order local velocities associated with mean curvature or its anisotropic generalizations of the moving fronts. We also propose a numerical method based on spatial variable stretching to overcome the numerical limitations brought by physical settings in this threshold dislocation dynamics method. Specifically, this variable stretching method is able to correct the mobility and to rescale the velocity, which can be applied generally to any threshold dynamics method. We validate the proposed threshold dislocation dynamics method by numerical simulations of various motions and interaction of dislocations.

To build speech processing methods that can handle speech as naturally as humans, researchers have explored multiple ways of building an invertible mapping from speech to an interpretable space. The articulatory space is a promising inversion target, since this space captures the mechanics of speech production. To this end, we build an acoustic-to-articulatory inversion (AAI) model that leverages self-supervision to generalize to unseen speakers. Our approach obtains 0.784 correlation on an electromagnetic articulography (EMA) dataset, improving the state-of-the-art by 12.5\%. Additionally, we show the interpretability of these representations through directly comparing the behavior of estimated representations with speech production behavior. Finally, we propose a resynthesis-based AAI evaluation metric that does not rely on articulatory labels, demonstrating its efficacy with an 18-speaker dataset.

We investigate a combinatorial optimization problem that involves patrolling the edges of an acute triangle using a unit-speed agent. The goal is to minimize the maximum (1-gap) idle time of any edge, which is defined as the time gap between consecutive visits to that edge. This problem has roots in a centuries-old optimization problem posed by Fagnano in 1775, who sought to determine the inscribed triangle of an acute triangle with the minimum perimeter. It is well-known that the orthic triangle, giving rise to a periodic and cyclic trajectory obeying the laws of geometric optics, is the optimal solution to Fagnano's problem. Such trajectories are known as Fagnano orbits, or more generally as billiard trajectories. We demonstrate that the orthic triangle is also an optimal solution to the patrolling problem. Our main contributions pertain to new connections between billiard trajectories and optimal patrolling schedules in combinatorial optimization. In particular, as an artifact of our arguments, we introduce a novel 2-gap patrolling problem that seeks to minimize the visitation time of objects every three visits. We prove that there exist infinitely many well-structured billiard-type optimal trajectories for this problem, including the orthic trajectory, which has the special property of minimizing the visitation time gap between any two consecutively visited edges. Complementary to that, we also examine the cost of dynamic, sub-optimal trajectories to the 1-gap patrolling optimization problem. These trajectories result from a greedy algorithm and can be implemented by a computationally primitive mobile agent.

Model-based control requires an accurate model of the system dynamics for precisely and safely controlling the robot in complex and dynamic environments. Moreover, in the presence of variations in the operating conditions, the model should be continuously refined to compensate for dynamics changes. In this paper, we present a self-supervised learning approach that actively models the dynamics of nonlinear robotic systems. We combine offline learning from past experience and online learning from current robot interaction with the unknown environment. These two ingredients enable a highly sample-efficient and adaptive learning process, capable of accurately inferring model dynamics in real-time even in operating regimes that greatly differ from the training distribution. Moreover, we design an uncertainty-aware model predictive controller that is heuristically conditioned to the aleatoric (data) uncertainty of the learned dynamics. This controller actively chooses the optimal control actions that (i) optimize the control performance and (ii) improve the efficiency of online learning sample collection. We demonstrate the effectiveness of our method through a series of challenging real-world experiments using a quadrotor system. Our approach showcases high resilience and generalization capabilities by consistently adapting to unseen flight conditions, while it significantly outperforms classical and adaptive control baselines.

The Fourier transform, serving as an explicit decomposition method for visual signals, has been employed to explain the out-of-distribution generalization behaviors of Convolutional Neural Networks (CNNs). Previous research and empirical studies have indicated that the amplitude spectrum plays a decisive role in CNN recognition, but it is susceptible to disturbance caused by distribution shifts. On the other hand, the phase spectrum preserves highly-structured spatial information, which is crucial for visual representation learning. In this paper, we aim to clarify the relationships between Domain Generalization (DG) and the frequency components by introducing a Fourier-based structural causal model. Specifically, we interpret the phase spectrum as semi-causal factors and the amplitude spectrum as non-causal factors. Building upon these observations, we propose Phase Match (PhaMa) to address DG problems. Our method introduces perturbations on the amplitude spectrum and establishes spatial relationships to match the phase components. Through experiments on multiple benchmarks, we demonstrate that our proposed method achieves state-of-the-art performance in domain generalization and out-of-distribution robustness tasks.

The detection of multiple targets in an enclosed scene, from its outside, is a challenging topic of research addressed by Through-the-Wall Radar Imaging (TWRI). Traditionally, TWRI methods operate in two steps: first the removal of wall clutter then followed by the recovery of targets positions. Recent approaches manage in parallel the processing of the wall and targets via low rank plus sparse matrix decomposition and obtain better performances. In this paper, we reformulate this precisely via a RPCA-type problem, where the sparse vector appears in a Kronecker product. We extend this approach by adding a robust distance with flexible structure to handle heterogeneous noise and outliers, which may appear in TWRI measurements. The resolution is achieved via the Alternating Direction Method of Multipliers (ADMM) and variable splitting to decouple the constraints. The removal of the front wall is achieved via a closed-form proximal evaluation and the recovery of targets is possible via a tailored Majorization-Minimization (MM) step. The analysis and validation of our method is carried out using Finite-Difference Time-Domain (FDTD) simulated data, which show the advantage of our method in detection performance over complex scenarios.

In the literature, the reliability analysis of one-shot devices is found under accelerated life testing in the presence of various stress factors. The application of one-shot devices can be extended to the bio-medical field, where we often evidence that inflicted with a certain disease, survival time would be under different stress factors like environmental stress, co-morbidity, the severity of disease etc. This work is concerned with a one-shot device data analysis and applies it to SEER Gallbladder cancer data. The two-parameter logistic exponential distribution is applied as a lifetime distribution. For robust parameter estimation, weighted minimum density power divergence estimators (WMDPDE) is obtained along with the conventional maximum likelihood estimators (MLE). The asymptotic behaviour of the WMDPDE and the robust test statistic based on the density power divergence measure are also studied. The performances of estimators are evaluated through extensive simulation experiments. Later those developments are applied to SEER Gallbladder cancer data. Citing the importance of knowing exactly when to inspect the one-shot devices put to the test, a search for optimum inspection times is performed. This optimization is designed to minimize a defined cost function which strikes a trade-off between the precision of the estimation and experimental cost. The search is accomplished through the population-based heuristic optimization method Genetic Algorithm.

Stochastic processes have found numerous applications in science, as they are broadly used to model a variety of natural phenomena. Due to their intrinsic randomness and uncertainty, they are however difficult to characterize. Here, we introduce an unsupervised machine learning approach to determine the minimal set of parameters required to effectively describe the dynamics of a stochastic process. Our method builds upon an extended $\beta$-variational autoencoder architecture. By means of simulated datasets corresponding to paradigmatic diffusion models, we showcase its effectiveness in extracting the minimal relevant parameters that accurately describe these dynamics. Furthermore, the method enables the generation of new trajectories that faithfully replicate the expected stochastic behavior. Overall, our approach enables for the autonomous discovery of unknown parameters describing stochastic processes, hence enhancing our comprehension of complex phenomena across various fields.

Understanding dynamics in complex systems is challenging because there are many degrees of freedom, and those that are most important for describing events of interest are often not obvious. The leading eigenfunctions of the transition operator are useful for visualization, and they can provide an efficient basis for computing statistics such as the likelihood and average time of events (predictions). Here we develop inexact iterative linear algebra methods for computing these eigenfunctions (spectral estimation) and making predictions from a data set of short trajectories sampled at finite intervals. We demonstrate the methods on a low-dimensional model that facilitates visualization and a high-dimensional model of a biomolecular system. Implications for the prediction problem in reinforcement learning are discussed.

Over the past few years, the rapid development of deep learning technologies for computer vision has greatly promoted the performance of medical image segmentation (MedISeg). However, the recent MedISeg publications usually focus on presentations of the major contributions (e.g., network architectures, training strategies, and loss functions) while unwittingly ignoring some marginal implementation details (also known as "tricks"), leading to a potential problem of the unfair experimental result comparisons. In this paper, we collect a series of MedISeg tricks for different model implementation phases (i.e., pre-training model, data pre-processing, data augmentation, model implementation, model inference, and result post-processing), and experimentally explore the effectiveness of these tricks on the consistent baseline models. Compared to paper-driven surveys that only blandly focus on the advantages and limitation analyses of segmentation models, our work provides a large number of solid experiments and is more technically operable. With the extensive experimental results on both the representative 2D and 3D medical image datasets, we explicitly clarify the effect of these tricks. Moreover, based on the surveyed tricks, we also open-sourced a strong MedISeg repository, where each of its components has the advantage of plug-and-play. We believe that this milestone work not only completes a comprehensive and complementary survey of the state-of-the-art MedISeg approaches, but also offers a practical guide for addressing the future medical image processing challenges including but not limited to small dataset learning, class imbalance learning, multi-modality learning, and domain adaptation. The code has been released at: //github.com/hust-linyi/MedISeg

北京阿比特科技有限公司