Research software engineers can use Assurance Cases (ACs) to guide Verification and Validation (VnV) efforts. An AC is a structured argument that a property like correctness holds. We illustrate how ACs can guide VnV activities via a case study of software for automatically extracting the 3D segmentation of the aorta from medical images of the chest. The AC argument suggests that the following evidence is required: comparison to a pseudo-oracle; traceability between requirements, design, code and tests; review of all artifacts by a domain expert with proper credentials; documentation of input assumptions; and a warning that only qualified people should use the software. The case study highlights that code is not the only artifact of interest for building confidence and that making an explicit distinction between software and user responsibilities is useful.
We introduce InternVL 2.5, an advanced multimodal large language model (MLLM) series that builds upon InternVL 2.0, maintaining its core model architecture while introducing significant enhancements in training and testing strategies as well as data quality. In this work, we delve into the relationship between model scaling and performance, systematically exploring the performance trends in vision encoders, language models, dataset sizes, and test-time configurations. Through extensive evaluations on a wide range of benchmarks, including multi-discipline reasoning, document understanding, multi-image / video understanding, real-world comprehension, multimodal hallucination detection, visual grounding, multilingual capabilities, and pure language processing, InternVL 2.5 exhibits competitive performance, rivaling leading commercial models such as GPT-4o and Claude-3.5-Sonnet. Notably, our model is the first open-source MLLMs to surpass 70% on the MMMU benchmark, achieving a 3.7-point improvement through Chain-of-Thought (CoT) reasoning and showcasing strong potential for test-time scaling. We hope this model contributes to the open-source community by setting new standards for developing and applying multimodal AI systems. HuggingFace demo see //huggingface.co/spaces/OpenGVLab/InternVL
DNN-based language models perform excellently on various tasks, but even SOTA LLMs are susceptible to textual adversarial attacks. Adversarial texts play crucial roles in multiple subfields of NLP. However, current research has the following issues. (1) Most textual adversarial attack methods target rich-resourced languages. How do we generate adversarial texts for less-studied languages? (2) Most textual adversarial attack methods are prone to generating invalid or ambiguous adversarial texts. How do we construct high-quality adversarial robustness benchmarks? (3) New language models may be immune to part of previously generated adversarial texts. How do we update adversarial robustness benchmarks? To address the above issues, we introduce HITL-GAT, a system based on a general approach to human-in-the-loop generation of adversarial texts. HITL-GAT contains four stages in one pipeline: victim model construction, adversarial example generation, high-quality benchmark construction, and adversarial robustness evaluation. Additionally, we utilize HITL-GAT to make a case study on Tibetan script which can be a reference for the adversarial research of other less-studied languages.
Given recent advancements of Large Language Models (LLMs), code generation tasks attract immense attention for wide application in different domains. In an effort to evaluate and select a best model to automatically remediate system incidents discovered by Application Performance Monitoring (APM) platforms, it is crucial to verify if the generated code is syntactically and semantically correct, and whether it can be executed correctly as intended. However, current methods for evaluating the quality of code generated by LLMs heavily rely on surface form similarity metrics (e.g. BLEU, ROUGE, and exact/partial match) which have numerous limitations. In contrast, execution based evaluation focuses more on code functionality and does not constrain the code generation to any fixed solution. Nevertheless, designing and implementing such execution-based evaluation platform is not a trivial task. There are several works creating execution-based evaluation platforms for popular programming languages such as SQL, Python, Java, but limited or no attempts for scripting languages such as Bash and PowerShell. In this paper, we present the first execution-based evaluation platform in which we created three test suites (total 125 handcrafted test cases) to evaluate Bash (both single-line commands and multiple-line scripts) and PowerShell codes generated by LLMs. We benchmark seven closed and open-source LLMs using our platform with different techniques (zero-shot vs. few-shot learning).
Principal Component Analysis (PCA) is one of the most used tools for extracting low-dimensional representations of data, in particular for time series. Performances are known to strongly depend on the quality (amount of noise) and the quantity of data. We here investigate the impact of heterogeneities, often present in real data, on the reconstruction of low-dimensional trajectories and of their associated modes. We focus in particular on the effects of sample-to-sample fluctuations and of component-dependent temporal convolution and noise in the measurements. We derive analytical predictions for the error on the reconstructed trajectory and the confusion between the modes using the replica method in a high-dimensional setting, in which the number and the dimension of the data are comparable. We find in particular that sample-to-sample variability, is deleterious for the reconstruction of the signal trajectory, but beneficial for the inference of the modes, and that the fluctuations in the temporal convolution kernels prevent perfect recovery of the latent modes even for very weak measurement noise. Our predictions are corroborated by simulations with synthetic data for a variety of control parameters.
We prove that the celebrated Planar Product Structure Theorem by Dujmovic et al, and also related graph product structure results, can be formulated with the induced subgraph containment relation. Precisely, we prove that if a graph G is a subgraph of the strong product of a graph Q of bounded maximum degree (such as a path) and a graph M of bounded tree-width, then G is an induced subgraph of the strong product of Q and a graph M' of bounded tree-width being at most exponential in the maximum degree of Q and the tree-width of M. In particular, if G is planar, we show that G is an induced subgraph of the strong product of a path and a graph of tree-width 39. In the course of proving this result, we introduce and study H-clique-width, a new single structural measure that captures a hereditary analogue of the traditional product structure (where, informally, the strong product has one factor from the graph class H and one factor of bounded clique-width).
Software development support tools have been studied for a long time, with recent approaches using Large Language Models (LLMs) for code generation. These models can generate Python code for data science and machine learning applications. LLMs are helpful for software engineers because they increase productivity in daily work. An LLM can also serve as a "mentor" for inexperienced software developers, and be a viable learning support. High-quality code generation with LLMs can also be beneficial in geospatial data science. However, this domain poses different challenges, and code generation LLMs are typically not evaluated on geospatial tasks. Here, we show how we constructed an evaluation benchmark for code generation models, based on a selection of geospatial tasks. We categorised geospatial tasks based on their complexity and required tools. Then, we created a dataset with tasks that test model capabilities in spatial reasoning, spatial data processing, and geospatial tools usage. The dataset consists of specific coding problems that were manually created for high quality. For every problem, we proposed a set of test scenarios that make it possible to automatically check the generated code for correctness. In addition, we tested a selection of existing code generation LLMs for code generation in the geospatial domain. We share our dataset and reproducible evaluation code on a public GitHub repository, arguing that this can serve as an evaluation benchmark for new LLMs in the future. Our dataset will hopefully contribute to the development new models capable of solving geospatial coding tasks with high accuracy. These models will enable the creation of coding assistants tailored for geospatial applications.
The Data Management team of the Vera C. Rubin Observatory has developed a data description language and toolset, Felis, for defining the semantics and metadata of its public-facing data catalogs. Felis uses a rich Pydantic data model for describing and validating catalog metadata, expressed as a human-readable and editable YAML format. Felis also provides a Python library and command line interface for working with these data models. The metadata is used to populate the TAP_SCHEMA tables for the IVOA TAP services utilized by the Rubin Science Platform (RSP). Felis's current capabilities will be discussed along with some future plans.
This work identifies 18 foundational challenges in assuring the alignment and safety of large language models (LLMs). These challenges are organized into three different categories: scientific understanding of LLMs, development and deployment methods, and sociotechnical challenges. Based on the identified challenges, we pose $200+$ concrete research questions.
Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.
This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100X fewer labels.