To meet the urgent requirements for the climate change mitigation, several proactive measures of energy efficiency have been implemented in maritime industry. Many of these practices depend highly on the onboard data of vessel's operation and environmental conditions. In this paper, a high resolution onboard data from passenger vessels in short-sea shipping (SSS) have been collected and preprocessed. We first investigated the available data to deploy it effectively to model the physics of the vessel, and hence the vessel performance. Since in SSS, the weather measurements and forecasts might have not been in temporal and spatial resolutions that accurately representing the actual environmental conditions. Then, We proposed a data-driven modeling approach for vessel energy efficiency. This approach addresses the challenges of data representation and energy modeling by combining and aggregating data from multiple sources and seamlessly integrates explainable artificial intelligence (XAI) to attain clear insights about the energy efficiency for a vessel in SSS. After that, the developed model of energy efficiency has been utilized in developing a framework for optimizing the vessel voyage to minimize the fuel consumption and meeting the constraint of arrival time. Moreover, we developed a spatial clustering approach for labeling the vessel paths to detect the paths for vessels with operating routes of repeatable and semi-repeatable paths.
Researchers have focused on understanding how individual's behavior is influenced by the behaviors of their peers in observational studies of social networks. Identifying and estimating causal peer influence, however, is challenging due to confounding by homophily, where people tend to connect with those who share similar characteristics with them. Moreover, since all the attributes driving homophily are generally not always observed and act as unobserved confounders, identifying and estimating causal peer influence becomes infeasible using standard causal identification assumptions. In this paper, we address this challenge by leveraging latent locations inferred from the network itself to disentangle homophily from causal peer influence, and we extend this approach to multiple networks by adopting a Bayesian hierarchical modeling framework. To accommodate the nonlinear dependency of peer influence on individual behavior, we employ a Bayesian nonparametric method, specifically Bayesian Additive Regression Trees (BART), and we propose a Bayesian framework that accounts for the uncertainty in inferring latent locations. We assess the operating characteristics of the estimator via extensive simulation study. Finally, we apply our method to estimate causal peer influence in advice-seeking networks of teachers in secondary schools, in order to assess whether the teachers' belief about mathematics education is influenced by the beliefs of their peers from whom they receive advice. Our results suggest that, overlooking latent homophily can lead to either underestimation or overestimation of causal peer influence, accompanied by considerable estimation uncertainty.
In a context of a continuous digitalisation of processes, organisations must deal with the challenge of detecting anomalies that can reveal suspicious activities upon an increasing volume of data. To pursue this goal, audit engagements are carried out regularly, and internal auditors and purchase specialists are constantly looking for new methods to automate these processes. This work proposes a methodology to prioritise the investigation of the cases detected in two large purchase datasets from real data. The goal is to contribute to the effectiveness of the companies' control efforts and to increase the performance of carrying out such tasks. A comprehensive Exploratory Data Analysis is carried out before using unsupervised Machine Learning techniques addressed to detect anomalies. A univariate approach has been applied through the z-Score index and the DBSCAN algorithm, while a multivariate analysis is implemented with the k-Means and Isolation Forest algorithms, and the Silhouette index, resulting in each method having a transaction candidates' proposal to be reviewed. An ensemble prioritisation of the candidates is provided jointly with a proposal of explicability methods (LIME, Shapley, SHAP) to help the company specialists in their understanding.
The total energy cost of computing activities is steadily increasing and projections indicate that it will be one of the dominant global energy consumers in the coming decades. However, perhaps due to its relative youth, the video game sector has not yet developed the same level of environmental awareness as other computing technologies despite the estimated three billion regular video game players in the world. This work evaluates the energy consumption of the most widely used industry-scale video game engines: Unity and Unreal Engine. Specifically, our work uses three scenarios representing relevant aspects of video games (Physics, Statics Meshes, and Dynamic Meshes) to compare the energy consumption of the engines. The aim is to determine the influence of using each of the two engines on energy consumption. Our research has confirmed significant differences in the energy consumption of video game engines: 351% in Physics in favor of Unity, 17% in Statics Meshes in favor of Unity, and 26% in Dynamic Meshes in favor of Unreal Engine. These results represent an opportunity for worldwide potential savings of at least 51 TWh per year, equivalent to the annual consumption of nearly 13 million European households, that might encourage a new branch of research on energy-efficient video game engines.
We present a novel algorithm that efficiently computes near-optimal deterministic policies for constrained reinforcement learning (CRL) problems. Our approach combines three key ideas: (1) value-demand augmentation, (2) action-space approximate dynamic programming, and (3) time-space rounding. Under mild reward assumptions, our algorithm constitutes a fully polynomial-time approximation scheme (FPTAS) for a diverse class of cost criteria. This class requires that the cost of a policy can be computed recursively over both time and (state) space, which includes classical expectation, almost sure, and anytime constraints. Our work not only provides provably efficient algorithms to address real-world challenges in decision-making but also offers a unifying theory for the efficient computation of constrained deterministic policies.
The rapid development of collaborative robotics has provided a new possibility of helping the elderly who has difficulties in daily life, allowing robots to operate according to specific intentions. However, efficient human-robot cooperation requires natural, accurate and reliable intention recognition in shared environments. The current paramount challenge for this is reducing the uncertainty of multimodal fused intention to be recognized and reasoning adaptively a more reliable result despite current interactive condition. In this work we propose a novel learning-based multimodal fusion framework Batch Multimodal Confidence Learning for Opinion Pool (BMCLOP). Our approach combines Bayesian multimodal fusion method and batch confidence learning algorithm to improve accuracy, uncertainty reduction and success rate given the interactive condition. In particular, the generic and practical multimodal intention recognition framework can be easily extended further. Our desired assistive scenarios consider three modalities gestures, speech and gaze, all of which produce categorical distributions over all the finite intentions. The proposed method is validated with a six-DoF robot through extensive experiments and exhibits high performance compared to baselines.
Data uncertainties, such as sensor noise, occlusions or limitations in the acquisition method can introduce irreducible ambiguities in images, which result in varying, yet plausible, semantic hypotheses. In Machine Learning, this ambiguity is commonly referred to as aleatoric uncertainty. In image segmentation, latent density models can be utilized to address this problem. The most popular approach is the Probabilistic U-Net (PU-Net), which uses latent Normal densities to optimize the conditional data log-likelihood Evidence Lower Bound. In this work, we demonstrate that the PU-Net latent space is severely sparse and heavily under-utilized. To address this, we introduce mutual information maximization and entropy-regularized Sinkhorn Divergence in the latent space to promote homogeneity across all latent dimensions, effectively improving gradient-descent updates and latent space informativeness. Our results show that by applying this on public datasets of various clinical segmentation problems, our proposed methodology receives up to 11% performance gains compared against preceding latent variable models for probabilistic segmentation on the Hungarian-Matched Intersection over Union. The results indicate that encouraging a homogeneous latent space significantly improves latent density modeling for medical image segmentation.
Leveraging complementary relationships across modalities has recently drawn a lot of attention in multimodal emotion recognition. Most of the existing approaches explored cross-attention to capture the complementary relationships across the modalities. However, the modalities may also exhibit weak complementary relationships, which may deteriorate the cross-attended features, resulting in poor multimodal feature representations. To address this problem, we propose Inconsistency-Aware Cross-Attention (IACA), which can adaptively select the most relevant features on-the-fly based on the strong or weak complementary relationships across audio and visual modalities. Specifically, we design a two-stage gating mechanism that can adaptively select the appropriate relevant features to deal with weak complementary relationships. Extensive experiments are conducted on the challenging Aff-Wild2 dataset to show the robustness of the proposed model.
Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.
Humans can naturally and effectively find salient regions in complex scenes. Motivated by this observation, attention mechanisms were introduced into computer vision with the aim of imitating this aspect of the human visual system. Such an attention mechanism can be regarded as a dynamic weight adjustment process based on features of the input image. Attention mechanisms have achieved great success in many visual tasks, including image classification, object detection, semantic segmentation, video understanding, image generation, 3D vision, multi-modal tasks and self-supervised learning. In this survey, we provide a comprehensive review of various attention mechanisms in computer vision and categorize them according to approach, such as channel attention, spatial attention, temporal attention and branch attention; a related repository //github.com/MenghaoGuo/Awesome-Vision-Attentions is dedicated to collecting related work. We also suggest future directions for attention mechanism research.
Analyzing observational data from multiple sources can be useful for increasing statistical power to detect a treatment effect; however, practical constraints such as privacy considerations may restrict individual-level information sharing across data sets. This paper develops federated methods that only utilize summary-level information from heterogeneous data sets. Our federated methods provide doubly-robust point estimates of treatment effects as well as variance estimates. We derive the asymptotic distributions of our federated estimators, which are shown to be asymptotically equivalent to the corresponding estimators from the combined, individual-level data. We show that to achieve these properties, federated methods should be adjusted based on conditions such as whether models are correctly specified and stable across heterogeneous data sets.