亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently, there has been a heightened interest in building chatbots based on Large Language Models (LLMs) to emulate human-like qualities in dialogues, including expressing empathy and offering emotional support. Despite having access to commonsense knowledge to better understand the psychological aspects and causality of dialogue context, even these powerful LLMs struggle to achieve the goals of empathy and emotional support. As current approaches do not adequately anticipate dialogue future, they may mislead language models to ignore complex dialogue goals of empathy and emotional support, resulting in unsupportive responses lacking empathy. To address this issue, we present an innovative framework named Sensible Empathetic Dialogue Generation with Visionary Commonsense Knowledge (Sibyl). Designed to concentrate on the imminent dialogue future, this paradigm directs LLMs toward the implicit requirements of the conversation, aiming to provide more sensible responses. Experimental results demonstrate that incorporating our paradigm for acquiring commonsense knowledge into LLMs comprehensively enhances the quality of their responses.

相關內容

Handwritten Mathematical Expression Recognition (HMER) has wide applications in human-machine interaction scenarios, such as digitized education and automated offices. Recently, sequence-based models with encoder-decoder architectures have been commonly adopted to address this task by directly predicting LaTeX sequences of expression images. However, these methods only implicitly learn the syntax rules provided by LaTeX, which may fail to describe the position and hierarchical relationship between symbols due to complex structural relations and diverse handwriting styles. To overcome this challenge, we propose a position forest transformer (PosFormer) for HMER, which jointly optimizes two tasks: expression recognition and position recognition, to explicitly enable position-aware symbol feature representation learning. Specifically, we first design a position forest that models the mathematical expression as a forest structure and parses the relative position relationships between symbols. Without requiring extra annotations, each symbol is assigned a position identifier in the forest to denote its relative spatial position. Second, we propose an implicit attention correction module to accurately capture attention for HMER in the sequence-based decoder architecture. Extensive experiments validate the superiority of PosFormer, which consistently outperforms the state-of-the-art methods 2.03%/1.22%/2.00%, 1.83%, and 4.62% gains on the single-line CROHME 2014/2016/2019, multi-line M2E, and complex MNE datasets, respectively, with no additional latency or computational cost. Code is available at //github.com/SJTU-DeepVisionLab/PosFormer.

Large Language Models (LLMs) have demonstrated remarkable capabilities in solving various tasks, yet they often struggle with comprehensively addressing complex and vague problems. Existing approaches, including multi-agent LLM systems, offer solutions to certain challenges but still require manual setup and lack scalability. To address this gap, we propose a novel approach leveraging decomposition to enable LLMs to tackle vague problems effectively. Our approach involves an orchestrating LLM that interacts with users to understand the problem and then decomposes it into tangible sub-problems. Instead of expecting the LLM to solve the entire problem in one go, we train it to ask follow-up questions to gain a deeper understanding of the user's requirements. Once the problem is adequately understood, the orchestrating LLM divides it into smaller, manageable sub-problems. Each sub-problem is then assigned to specialized LLM agents or non-LLM functions for resolution. These agents work in parallel to solve their respective sub-problems, with the orchestrating LLM overseeing the process and compiling the solutions into a comprehensive answer for the user. By adopting this decomposition approach, we alleviate the constraints imposed by token limitations on LLM outputs and empower them to provide nuanced solutions to complex and ambiguous problems. Through our approach, we aim to enable LLMs to think and operate more like humans, breaking down complex problems into manageable parts and collaboratively solving them. This not only enhances the problem-solving capabilities of LLMs but also offers a scalable and efficient method for addressing a wide range of real-world challenges.

With recent developments in Embodied Artificial Intelligence (EAI) research, there has been a growing demand for high-quality, large-scale interactive scene generation. While prior methods in scene synthesis have prioritized the naturalness and realism of the generated scenes, the physical plausibility and interactivity of scenes have been largely left unexplored. To address this disparity, we introduce PhyScene, a novel method dedicated to generating interactive 3D scenes characterized by realistic layouts, articulated objects, and rich physical interactivity tailored for embodied agents. Based on a conditional diffusion model for capturing scene layouts, we devise novel physics- and interactivity-based guidance mechanisms that integrate constraints from object collision, room layout, and object reachability. Through extensive experiments, we demonstrate that PhyScene effectively leverages these guidance functions for physically interactable scene synthesis, outperforming existing state-of-the-art scene synthesis methods by a large margin. Our findings suggest that the scenes generated by PhyScene hold considerable potential for facilitating diverse skill acquisition among agents within interactive environments, thereby catalyzing further advancements in embodied AI research. Project website: //physcene.github.io.

With the help of Score Distillation Sampling (SDS) and the rapid development of neural 3D representations, some methods have been proposed to perform 3D editing such as adding additional geometries, or overwriting textures. However, generalized 3D non-rigid editing task, which requires changing both the structure (posture or composition) and appearance (texture) of the original object, remains to be challenging in 3D editing field. In this paper, we propose Plasticine3D, a novel text-guided fine-grained controlled 3D editing pipeline that can perform 3D non-rigid editing with large structure deformations. Our work divides the editing process into a geometry editing stage and a texture editing stage to achieve separate control of structure and appearance. In order to maintain the details of the original object from different viewpoints, we propose a Multi-View-Embedding (MVE) Optimization strategy to ensure that the guidance model learns the features of the original object from various viewpoints. For the purpose of fine-grained control, we propose Embedding-Fusion (EF) to blend the original characteristics with the editing objectives in the embedding space, and control the extent of editing by adjusting the fusion rate. Furthermore, in order to address the issue of gradual loss of details during the generation process under high editing intensity, as well as the problem of insignificant editing effects in some scenarios, we propose Score Projection Sampling (SPS) as a replacement of score distillation sampling, which introduces additional optimization phases for editing target enhancement and original detail maintenance, leading to better editing quality. Extensive experiments demonstrate the effectiveness of our method on 3D non-rigid editing tasks

Wireless Capsule Endoscopy (WCE) is highly valued for its non-invasive and painless approach, though its effectiveness is compromised by uneven illumination from hardware constraints and complex internal dynamics, leading to overexposed or underexposed images. While researchers have discussed the challenges of low-light enhancement in WCE, the issue of correcting for different exposure levels remains underexplored. To tackle this, we introduce EndoUIC, a WCE unified illumination correction solution using an end-to-end promptable diffusion transformer (DiT) model. In our work, the illumination prompt module shall navigate the model to adapt to different exposure levels and perform targeted image enhancement, in which the Adaptive Prompt Integration (API) and Global Prompt Scanner (GPS) modules shall further boost the concurrent representation learning between the prompt parameters and features. Besides, the U-shaped restoration DiT model shall capture the long-range dependencies and contextual information for unified illumination restoration. Moreover, we present a novel Capsule-endoscopy Exposure Correction (CEC) dataset, including ground-truth and corrupted image pairs annotated by expert photographers. Extensive experiments against a variety of state-of-the-art (SOTA) methods on four datasets showcase the effectiveness of our proposed method and components in WCE illumination restoration, and the additional downstream experiments further demonstrate its utility for clinical diagnosis and surgical assistance.

Biomimicry has played a pivotal role in robotics. In contrast to rigid robots, bio-inspired robots exhibit an inherent compliance, facilitating versatile movements and operations in constrained spaces. The robot implementation in fabrication, however, has posed technical challenges and mechanical complexity, thereby underscoring a noticeable gap between research and practice. To address the limitation, the research draws inspiration from the unique musculoskeletal feature of vertebrate physiology, which displays significant capabilities for sophisticated locomotion. The research converts the biological paradigm into a tensegrity-based robotic system, which is formed by the design of rigid-flex coupling and a compliant mechanism. This integrated technique enables the robot to achieve a wide range of motions with variable stiffness and adaptability, holding great potential for advanced performance in ill-defined environments. In summation, the research aims to provide a robust foundation for tensegrity-based biomimetic robots in practice, enhancing the feasibility of undertaking intricate robotic constructions.

Database Management Systems (DBMSs) are vital components in modern data-driven systems. Their complexity often leads to logic bugs, which are implementation errors within the DBMSs that can lead to incorrect query results, data exposure, unauthorized access, etc., without necessarily causing visible system failures. Existing detection employs two strategies: rule-based bug detection and coverage-guided fuzzing. In general, rule specification itself is challenging; as a result, rule-based detection is limited to specific and simple rules. Coverage-guided fuzzing blindly explores code paths or blocks, many of which are unlikely to contain logic bugs; therefore, this strategy is cost-ineffective. In this paper, we design SQLaser, a SQL-clause-guided fuzzer for detecting logic bugs in DBMSs. Through a comprehensive examination of most existing logic bugs across four distinct DBMSs, excluding those causing system crashes, we have identified 35 logic bug patterns. These patterns manifest as certain SQL clause combinations that commonly result in logic bugs, and behind these clause combinations are a sequence of functions. We therefore model logic bug patterns as error-prone function chains (ie, sequences of functions). We further develop a directed fuzzer with a new path-to-path distance-calculation mechanism for effectively testing these chains and discovering additional logic bugs. This mechanism enables SQLaser to swiftly navigate to target sites and uncover potential bugs emerging from these paths. Our evaluation, conducted on SQLite, MySQL, PostgreSQL, and TiDB, demonstrates that SQLaser significantly accelerates bug discovery compared to other fuzzing approaches, reducing detection time by approximately 60%.

In the Emotion Recognition in Conversation task, recent investigations have utilized attention mechanisms exploring relationships among utterances from intra- and inter-speakers for modeling emotional interaction between them. However, attributes such as speaker personality traits remain unexplored and present challenges in terms of their applicability to other tasks or compatibility with diverse model architectures. Therefore, this work introduces a novel framework named BiosERC, which investigates speaker characteristics in a conversation. By employing Large Language Models (LLMs), we extract the "biographical information" of the speaker within a conversation as supplementary knowledge injected into the model to classify emotional labels for each utterance. Our proposed method achieved state-of-the-art (SOTA) results on three famous benchmark datasets: IEMOCAP, MELD, and EmoryNLP, demonstrating the effectiveness and generalization of our model and showcasing its potential for adaptation to various conversation analysis tasks. Our source code is available at //github.com/yingjie7/BiosERC.

Prompt engineering, as an efficient and effective way to leverage Large Language Models (LLM), has drawn a lot of attention from the research community. The existing research primarily emphasizes the importance of adapting prompts to specific tasks, rather than specific LLMs. However, a good prompt is not solely defined by its wording, but also binds to the nature of the LLM in question. In this work, we first quantitatively demonstrate that different prompts should be adapted to different LLMs to enhance their capabilities across various downstream tasks in NLP. Then we novelly propose a model-adaptive prompt optimizer (MAPO) method that optimizes the original prompts for each specific LLM in downstream tasks. Extensive experiments indicate that the proposed method can effectively refine prompts for an LLM, leading to significant improvements over various downstream tasks.

We introduce Voyager, the first LLM-powered embodied lifelong learning agent in Minecraft that continuously explores the world, acquires diverse skills, and makes novel discoveries without human intervention. Voyager consists of three key components: 1) an automatic curriculum that maximizes exploration, 2) an ever-growing skill library of executable code for storing and retrieving complex behaviors, and 3) a new iterative prompting mechanism that incorporates environment feedback, execution errors, and self-verification for program improvement. Voyager interacts with GPT-4 via blackbox queries, which bypasses the need for model parameter fine-tuning. The skills developed by Voyager are temporally extended, interpretable, and compositional, which compounds the agent's abilities rapidly and alleviates catastrophic forgetting. Empirically, Voyager shows strong in-context lifelong learning capability and exhibits exceptional proficiency in playing Minecraft. It obtains 3.3x more unique items, travels 2.3x longer distances, and unlocks key tech tree milestones up to 15.3x faster than prior SOTA. Voyager is able to utilize the learned skill library in a new Minecraft world to solve novel tasks from scratch, while other techniques struggle to generalize. We open-source our full codebase and prompts at //voyager.minedojo.org/.

北京阿比特科技有限公司