亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

At the fully discrete setting, stability of the discontinuous Petrov--Galerkin (DPG) method with optimal test functions requires local test spaces that ensure the existence of Fortin operators. We construct such operators for $H^1$ and $\boldsymbol{H}(\mathrm{div})$ on simplices in any space dimension and arbitrary polynomial degree. The resulting test spaces are smaller than previously analyzed cases. For parameter-dependent norms, we achieve uniform boundedness by the inclusion of exponential layers. As an example, we consider a canonical DPG setting for reaction-dominated diffusion. Our test spaces guarantee uniform stability and quasi-optimal convergence of the scheme. We present numerical experiments that illustrate the loss of stability and error control by the residual for small diffusion coefficient when using standard polynomial test spaces, whereas we observe uniform stability and error control with our construction.

相關內容

In the present paper, we prove convergence rates for the Local Discontinuous Galerkin (LDG) approximation, proposed in Part I of the paper, for systems of $p$-Navier-Stokes type and $p$-Stokes type with $p\in (2,\infty)$. The convergence rates are optimal for linear ansatz functions. The results are supported by numerical experiments.

We construct a fast exact algorithm for the simulation of the first-passage time, jointly with the undershoot and overshoot, of a tempered stable subordinator over an arbitrary non-increasing absolutely continuous function. We prove that the running time of our algorithm has finite exponential moments and provide bounds on its expected running time with explicit dependence on the characteristics of the process and the initial value of the function. The expected running time grows at most cubically in the stability parameter (as it approaches either $0$ or $1$) and is linear in the tempering parameter and the initial value of the function. Numerical performance, based on the implementation in the dedicated GitHub repository, exhibits a good agreement with our theoretical bounds. We provide numerical examples to illustrate the performance of our algorithm in Monte Carlo estimation.

We present an extension of the linear sampling method for solving the sound-soft inverse acoustic scattering problem with randomly distributed point sources. The theoretical justification of our sampling method is based on the Helmholtz--Kirchhoff identity, the cross-correlation between measurements, and the volume and imaginary near-field operators, which we introduce and analyze. Implementations in MATLAB using boundary elements, the SVD, Tikhonov regularization, and Morozov's discrepancy principle are also discussed. We demonstrate the robustness and accuracy of our algorithms with several numerical experiments in two dimensions.

It is a common phenomenon that for high-dimensional and nonparametric statistical models, rate-optimal estimators balance squared bias and variance. Although this balancing is widely observed, little is known whether methods exist that could avoid the trade-off between bias and variance. We propose a general strategy to obtain lower bounds on the variance of any estimator with bias smaller than a prespecified bound. This shows to which extent the bias-variance trade-off is unavoidable and allows to quantify the loss of performance for methods that do not obey it. The approach is based on a number of abstract lower bounds for the variance involving the change of expectation with respect to different probability measures as well as information measures such as the Kullback-Leibler or $\chi^2$-divergence. In a second part of the article, the abstract lower bounds are applied to several statistical models including the Gaussian white noise model, a boundary estimation problem, the Gaussian sequence model and the high-dimensional linear regression model. For these specific statistical applications, different types of bias-variance trade-offs occur that vary considerably in their strength. For the trade-off between integrated squared bias and integrated variance in the Gaussian white noise model, we propose to combine the general strategy for lower bounds with a reduction technique. This allows us to reduce the original problem to a lower bound on the bias-variance trade-off for estimators with additional symmetry properties in a simpler statistical model. In the Gaussian sequence model, different phase transitions of the bias-variance trade-off occur. Although there is a non-trivial interplay between bias and variance, the rate of the squared bias and the variance do not have to be balanced in order to achieve the minimax estimation rate.

A knot $K$ in a directed graph $D$ is a strongly connected component of size at least two such that there is no arc $(u,v)$ with $u \in V(K)$ and $v\notin V(K)$. Given a directed graph $D=(V,E)$, we study Knot-Free Vertex Deletion (KFVD), where the goal is to remove the minimum number of vertices such that the resulting graph contains no knots. This problem naturally emerges from its application in deadlock resolution since knots are deadlocks in the OR-model of distributed computation. The fastest known exact algorithm in literature for KFVD runs in time $\mathcal{O}^\star(1.576^n)$. In this paper, we present an improved exact algorithm running in time $\mathcal{O}^\star(1.4549^n)$, where $n$ is the number of vertices in $D$. We also prove that the number of inclusion wise minimal knot-free vertex deletion sets is $\mathcal{O}^\star(1.4549^n)$ and construct a family of graphs with $\Omega(1.4422^n)$ minimal knot-free vertex deletion sets

Temporal memory safety bugs, especially use-after-free and double free bugs, pose a major security threat to C programs. Real-world exploits utilizing these bugs enable attackers to read and write arbitrary memory locations, causing disastrous violations of confidentiality, integrity, and availability. Many previous solutions retrofit temporal memory safety to C, but they all either incur high performance overhead and/or miss detecting certain types of temporal memory safety bugs. In this paper, we propose a temporal memory safety solution that is both efficient and comprehensive. Specifically, we extend Checked C, a spatially-safe extension to C, with temporally-safe pointers. These are implemented by combining two techniques: fat pointers and dynamic key-lock checks. We show that the fat-pointer solution significantly improves running time and memory overhead compared to the disjoint-metadata approach that provides the same level of protection. With empirical program data and hands-on experience porting real-world applications, we also show that our solution is practical in terms of backward compatibility -- one of the major complaints about fat pointers.

A class of implicit Milstein type methods is introduced and analyzed in the present article for stochastic differential equations (SDEs) with non-globally Lipschitz drift and diffusion coefficients. By incorporating a pair of method parameters $\theta, \eta \in [0, 1]$ into both the drift and diffusion parts, the new schemes are indeed a kind of drift-diffusion double implicit methods. Within a general framework, we offer upper mean-square error bounds for the proposed schemes, based on certain error terms only getting involved with the exact solution processes. Such error bounds help us to easily analyze mean-square convergence rates of the schemes, without relying on a priori high-order moment estimates of numerical approximations. Putting further globally polynomial growth condition, we successfully recover the expected mean-square convergence rate of order one for the considered schemes with $\theta \in [\tfrac12, 1], \eta \in [0, 1]$. Also, some of the proposed schemes are applied to solve three SDE models evolving in the positive domain $(0, \infty)$. More specifically, the particular drift-diffusion implicit Milstein method ($ \theta = \eta = 1 $) is utilized to approximate the Heston $\tfrac32$-volatility model and the stochastic Lotka-Volterra competition model. The semi-implicit Milstein method ($\theta =1, \eta = 0$) is used to solve the Ait-Sahalia interest rate model. Thanks to the previously obtained error bounds, we reveal the optimal mean-square convergence rate of the positivity preserving schemes under more relaxed conditions, compared with existing relevant results in the literature. Numerical examples are also reported to confirm the previous findings.

Explicit step-truncation tensor methods have recently proven successful in integrating initial value problems for high-dimensional partial differential equations (PDEs). However, the combination of non-linearity and stiffness may introduce time-step restrictions which could make explicit integration computationally infeasible. To overcome this problem, we develop a new class of implicit rank-adaptive algorithms for temporal integration of nonlinear evolution equations on tensor manifolds. These algorithms are based on performing one time step with a conventional time-stepping scheme, followed by an implicit fixed point iteration step involving a rank-adaptive truncation operation onto a tensor manifold. Implicit step truncation methods are straightforward to implement as they rely only on arithmetic operations between tensors, which can be performed by efficient and scalable parallel algorithms. Numerical applications demonstrating the effectiveness of implicit step-truncation tensor integrators are presented and discussed for the Allen-Cahn equation, the Fokker-Planck equation, and the nonlinear Schr\"odinger equation.

In this paper, we will show the $L^p$-resolvent estimate for the finite element approximation of the Stokes operator for $p \in \left( \frac{2N}{N+2}, \frac{2N}{N-2} \right)$, where $N \ge 2$ is the dimension of the domain. It is expected that this estimate can be applied to error estimates for finite element approximation of the non-stationary Navier--Stokes equations, since studies in this direction are successful in numerical analysis of nonlinear parabolic equations. To derive the resolvent estimate, we introduce the solution of the Stokes resolvent problem with a discrete external force. We then obtain local energy error estimate according to a novel localization technique and establish global $L^p$-type error estimates. The restriction for $p$ is caused by the treatment of lower-order terms appearing in the local energy error estimate. Our result may be a breakthrough in the $L^p$-theory of finite element methods for the non-stationary Navier--Stokes equations.

Krylov subspace methods are extensively used in scientific computing to solve large-scale linear systems. However, the performance of these iterative Krylov solvers on modern supercomputers is limited by expensive communication costs. The $s$-step strategy generates a series of $s$ Krylov vectors at a time to avoid communication. Asymptotically, the $s$-step approach can reduce communication latency by a factor of $s$. Unfortunately, due to finite-precision implementation, the step size has to be kept small for stability. In this work, we tackle the numerical instabilities encountered in the $s$-step GMRES algorithm. By choosing an appropriate polynomial basis and block orthogonalization schemes, we construct a communication avoiding $s$-step GMRES algorithm that automatically selects the optimal step size to ensure numerical stability. To further maximize communication savings, we introduce scaled Newton polynomials that can increase the step size $s$ to a few hundreds for many problems. An initial step size estimator is also developed to efficiently choose the optimal step size for stability. The guaranteed stability of the proposed algorithm is demonstrated using numerical experiments. In the process, we also evaluate how the choice of polynomial and preconditioning affects the stability limit of the algorithm. Finally, we show parallel scalability on more than 14,000 cores in a distributed-memory setting. Perfectly linear scaling has been observed in both strong and weak scaling studies with negligible communication costs.

北京阿比特科技有限公司