Pathological alterations in the human vascular system underlie many chronic diseases, such as atherosclerosis and aneurysms. However, manually analyzing diagnostic images of the vascular system, such as computed tomographic angiograms (CTAs) is a time-consuming and tedious process. To address this issue, we propose a deep learning model to segment the vascular system in CTA images of patients undergoing surgery for peripheral arterial disease (PAD). Our study focused on accurately segmenting the vascular system (1) from the descending thoracic aorta to the iliac bifurcation and (2) from the descending thoracic aorta to the knees in CTA images using deep learning techniques. Our approach achieved average Dice accuracies of 93.5% and 80.64% in test dataset for (1) and (2), respectively, highlighting its high accuracy and potential clinical utility. These findings demonstrate the use of deep learning techniques as a valuable tool for medical professionals to analyze the health of the vascular system efficiently and accurately. Please visit the GitHub page for this paper at //github.com/pip-alireza/TransOnet.
Survival analysis is a valuable tool for estimating the time until specific events, such as death or cancer recurrence, based on baseline observations. This is particularly useful in healthcare to prognostically predict clinically important events based on patient data. However, existing approaches often have limitations; some focus only on ranking patients by survivability, neglecting to estimate the actual event time, while others treat the problem as a classification task, ignoring the inherent time-ordered structure of the events. Furthermore, the effective utilization of censored samples - training data points where the exact event time is unknown - is essential for improving the predictive accuracy of the model. In this paper, we introduce CenTime, a novel approach to survival analysis that directly estimates the time to event. Our method features an innovative event-conditional censoring mechanism that performs robustly even when uncensored data is scarce. We demonstrate that our approach forms a consistent estimator for the event model parameters, even in the absence of uncensored data. Furthermore, CenTime is easily integrated with deep learning models with no restrictions on batch size or the number of uncensored samples. We compare our approach with standard survival analysis methods, including the Cox proportional-hazard model and DeepHit. Our results indicate that CenTime offers state-of-the-art performance in predicting time-to-death while maintaining comparable ranking performance. Our implementation is publicly available at //github.com/ahmedhshahin/CenTime.
Building machines capable of efficiently collaborating with humans has been a longstanding goal in artificial intelligence. Especially in the presence of uncertainties, optimal cooperation often requires that humans and artificial agents model each other's behavior and use these models to infer underlying goals, beliefs or intentions, potentially involving multiple levels of recursion. Empirical evidence for such higher-order cognition in human behavior is also provided by previous works in cognitive science, linguistics, and robotics. We advocate for a new paradigm for active learning for human feedback that utilises humans as active data sources while accounting for their higher levels of agency. In particular, we discuss how increasing level of agency results in qualitatively different forms of rational communication between an active learning system and a teacher. Additionally, we provide a practical example of active learning using a higher-order cognitive model. This is accompanied by a computational study that underscores the unique behaviors that this model produces.
Microbiome omics data including 16S rRNA reveal intriguing dynamic associations between the human microbiome and various disease states. Drastic changes in microbiota can be associated with factors like diet, hormonal cycles, diseases, and medical interventions. Along with the identification of specific bacteria taxa associated with diseases, recent advancements give evidence that metabolism, genetics, and environmental factors can model these microbial effects. However, the current analytic methods for integrating microbiome data are fully developed to address the main challenges of longitudinal metagenomics data, such as high-dimensionality, intra-sample dependence, and zero-inflation of observed counts. Hence, we propose the Bayes factor approach for model selection based on negative binomial, Poisson, zero-inflated negative binomial, and zero-inflated Poisson models with non-informative Jeffreys prior. We find that both in simulation studies and real data analysis, our Bayes factor remarkably outperform traditional Akaike information criterion and Vuong's test. A new R package BFZINBZIP has been introduced to do simulation study and real data analysis to facilitate Bayesian model selection based on the Bayes factor.
In the field of medical sciences, reliable detection and classification of brain tumors from images remains a formidable challenge due to the rarity of tumors within the population of patients. Therefore, the ability to detect tumors in anomaly scenarios is paramount for ensuring timely interventions and improved patient outcomes. This study addresses the issue by leveraging deep learning (DL) techniques to detect and classify brain tumors in challenging situations. The curated data set from the National Brain Mapping Lab (NBML) comprises 81 patients, including 30 Tumor cases and 51 Normal cases. The detection and classification pipelines are separated into two consecutive tasks. The detection phase involved comprehensive data analysis and pre-processing to modify the number of image samples and the number of patients of each class to anomaly distribution (9 Normal per 1 Tumor) to comply with real world scenarios. Next, in addition to common evaluation metrics for the testing, we employed a novel performance evaluation method called Patient to Patient (PTP), focusing on the realistic evaluation of the model. In the detection phase, we fine-tuned a YOLOv8n detection model to detect the tumor region. Subsequent testing and evaluation yielded competitive performance both in Common Evaluation Metrics and PTP metrics. Furthermore, using the Data Efficient Image Transformer (DeiT) module, we distilled a Vision Transformer (ViT) model from a fine-tuned ResNet152 as a teacher in the classification phase. This approach demonstrates promising strides in reliable tumor detection and classification, offering potential advancements in tumor diagnosis for real-world medical imaging scenarios.
We study the performance of the spectral method for the phase synchronization problem with additive Gaussian noises and incomplete data. The spectral method utilizes the leading eigenvector of the data matrix followed by a normalization step. We prove that it achieves the minimax lower bound of the problem with a matching leading constant under a squared $\ell_2$ loss. This shows that the spectral method has the same performance as more sophisticated procedures including maximum likelihood estimation, generalized power method, and semidefinite programming, as long as consistent parameter estimation is possible. To establish our result, we first have a novel choice of the population eigenvector, which enables us to establish the exact recovery of the spectral method when there is no additive noise. We then develop a new perturbation analysis toolkit for the leading eigenvector and show it can be well-approximated by its first-order approximation with a small $\ell_2$ error. We further extend our analysis to establish the exact minimax optimality of the spectral method for the orthogonal group synchronization.
The evolution of Large Language Models (LLMs) has introduced a new paradigm for investigating human behavior emulation. Recent research has employed LLM-based Agents to create a sociological research environment, in which agents exhibit behavior based on the unfiltered characteristics of large language models. However, these studies overlook the iterative development within a human-like setting - Human preferences and personalities are complex, shaped by various factors and subject to ongoing change as a result of environmental and subjective influences. In light of this observation, we propose Agent Framework for Shaping Preference and Personality (AFSPP), exploring the multifaceted impact of social networks and subjective consciousness on LLM-based Agents' preference and personality formation. With AFSPP, we have, for the first time, successfully replicated several key findings from human personality experiments. And other AFSPP-based experimental results indicate that plan making, sensory perceptions and social networking with subjective information, wield the most pronounced influence on preference shaping. AFSPP can significantly enhance the efficiency and scope of psychological experiments, while yielding valuable insights for Trustworthy Artificial Intelligence research for strategies to prevent undesirable preference and personality development.
The evaluation of large language models (LLMs) is crucial to assess their performance and mitigate potential security risks. In this paper, we introduce PromptBench, a unified library to evaluate LLMs. It consists of several key components that are easily used and extended by researchers: prompt construction, prompt engineering, dataset and model loading, adversarial prompt attack, dynamic evaluation protocols, and analysis tools. PromptBench is designed to be an open, general, and flexible codebase for research purposes that can facilitate original study in creating new benchmarks, deploying downstream applications, and designing new evaluation protocols. The code is available at: //github.com/microsoft/promptbench and will be continuously supported.
Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.
Inspired by the human cognitive system, attention is a mechanism that imitates the human cognitive awareness about specific information, amplifying critical details to focus more on the essential aspects of data. Deep learning has employed attention to boost performance for many applications. Interestingly, the same attention design can suit processing different data modalities and can easily be incorporated into large networks. Furthermore, multiple complementary attention mechanisms can be incorporated in one network. Hence, attention techniques have become extremely attractive. However, the literature lacks a comprehensive survey specific to attention techniques to guide researchers in employing attention in their deep models. Note that, besides being demanding in terms of training data and computational resources, transformers only cover a single category in self-attention out of the many categories available. We fill this gap and provide an in-depth survey of 50 attention techniques categorizing them by their most prominent features. We initiate our discussion by introducing the fundamental concepts behind the success of attention mechanism. Next, we furnish some essentials such as the strengths and limitations of each attention category, describe their fundamental building blocks, basic formulations with primary usage, and applications specifically for computer vision. We also discuss the challenges and open questions related to attention mechanism in general. Finally, we recommend possible future research directions for deep attention.
Deep neural networks have been able to outperform humans in some cases like image recognition and image classification. However, with the emergence of various novel categories, the ability to continuously widen the learning capability of such networks from limited samples, still remains a challenge. Techniques like Meta-Learning and/or few-shot learning showed promising results, where they can learn or generalize to a novel category/task based on prior knowledge. In this paper, we perform a study of the existing few-shot meta-learning techniques in the computer vision domain based on their method and evaluation metrics. We provide a taxonomy for the techniques and categorize them as data-augmentation, embedding, optimization and semantics based learning for few-shot, one-shot and zero-shot settings. We then describe the seminal work done in each category and discuss their approach towards solving the predicament of learning from few samples. Lastly we provide a comparison of these techniques on the commonly used benchmark datasets: Omniglot, and MiniImagenet, along with a discussion towards the future direction of improving the performance of these techniques towards the final goal of outperforming humans.