The objective of digital forgetting is, given a model with undesirable knowledge or behavior, obtain a new model where the detected issues are no longer present. The motivations for forgetting include privacy protection, copyright protection, elimination of biases and discrimination, and prevention of harmful content generation. Effective digital forgetting has to be effective (meaning how well the new model has forgotten the undesired knowledge/behavior), retain the performance of the original model on the desirable tasks, and be scalable (in particular forgetting has to be more efficient than retraining from scratch on just the tasks/data to be retained). This survey focuses on forgetting in large language models (LLMs). We first provide background on LLMs, including their components, the types of LLMs, and their usual training pipeline. Second, we describe the motivations, types, and desired properties of digital forgetting. Third, we introduce the approaches to digital forgetting in LLMs, among which unlearning methodologies stand out as the state of the art. Fourth, we provide a detailed taxonomy of machine unlearning methods for LLMs, and we survey and compare current approaches. Fifth, we detail datasets, models and metrics used for the evaluation of forgetting, retaining and runtime. Sixth, we discuss challenges in the area. Finally, we provide some concluding remarks.
Existing debiasing techniques are typically training-based or require access to the model's internals and output distributions, so they are inaccessible to end-users looking to adapt LLM outputs for their particular needs. In this study, we examine whether structured prompting techniques can offer opportunities for fair text generation. We evaluate a comprehensive end-user-focused iterative framework of debiasing that applies System 2 thinking processes for prompts to induce logical, reflective, and critical text generation, with single, multi-step, instruction, and role-based variants. By systematically evaluating many LLMs across many datasets and different prompting strategies, we show that the more complex System 2-based Implicative Prompts significantly improve over other techniques demonstrating lower mean bias in the outputs with competitive performance on the downstream tasks. Our work offers research directions for the design and the potential of end-user-focused evaluative frameworks for LLM use.
Before deploying outputs from foundation models in high-stakes tasks, it is imperative to ensure that they align with human values. For instance, in radiology report generation, reports generated by a vision-language model must align with human evaluations before their use in medical decision-making. This paper presents Conformal Alignment, a general framework for identifying units whose outputs meet a user-specified alignment criterion. It is guaranteed that on average, a prescribed fraction of selected units indeed meet the alignment criterion, regardless of the foundation model or the data distribution. Given any pre-trained model and new units with model-generated outputs, Conformal Alignment leverages a set of reference data with ground-truth alignment status to train an alignment predictor. It then selects new units whose predicted alignment scores surpass a data-dependent threshold, certifying their corresponding outputs as trustworthy. Through applications to question answering and radiology report generation, we demonstrate that our method is able to accurately identify units with trustworthy outputs via lightweight training over a moderate amount of reference data. En route, we investigate the informativeness of various features in alignment prediction and combine them with standard models to construct the alignment predictor.
Recent advancements in foundation models have yielded impressive performance across a wide range of tasks. Meanwhile, for specific applications, practitioners have been developing specialized application models. To enjoy the benefits of both kinds of models, one natural path is to transfer the knowledge in foundation models into specialized application models, which are generally more efficient for serving. Techniques from knowledge distillation may be applied here, where the application model learns to mimic the foundation model. However, specialized application models and foundation models have substantial gaps in capacity, employing distinct architectures, using different input features from different modalities, and being optimized on different distributions. These differences in model characteristics lead to significant challenges for distillation methods. In this work, we propose creating a teaching committee comprising both foundation model teachers and complementary teachers. Complementary teachers possess model characteristics akin to the student's, aiming to bridge the gap between the foundation model and specialized application models for a smoother knowledge transfer. Further, to accommodate the dissimilarity among the teachers in the committee, we introduce DiverseDistill, which allows the student to understand the expertise of each teacher and extract task knowledge. Our evaluations demonstrate that adding complementary teachers enhances student performance. Finally, DiverseDistill consistently outperforms baseline distillation methods, regardless of the teacher choices, resulting in significantly improved student performance.
According to many researchers, conceptual model (CM) development is a hard task, and system requirements are difficult to collect, causing many miscommunication problems. CMs require more than modeling ability alone - they first require an understanding of the targeted domain that the model attempts to represent. Accordingly, a preconceptual modeling (pre-CM) stage is intended to address ontological issues before typical CM development is initiated. It involves defining a portion of reality when entities and processes are differentiated and integrated as unified wholes. This pre-CM phase forms the focus of research in this paper. The purpose is not show how to model; rather, it is to demonstrate how to establish a metaphysical basis of the involved portion of reality. To demonstrate such a venture, we employ the so-called thinging machine (TM) modeling that has been proposed as a high-level CM. A TM model integrates staticity and dynamism grounded in a fundamental construct called a thimac (things/machine). It involves two modes of reality, existence (events) and subsistence (regions - roughly, specifications of things and processes). Currently, the dominant approach in CM has evolved to limit its scope of application to develop ontological categorization (types of things). In the TM approach, pre-CM metaphysics is viewed as a part and parcel of CM itself. The general research problem is how to map TM constructs to what is out there in the targeted domain. Discussions involve the nature of thimacs (things and processes) and subsistence and existence as they are superimposed over each other in reality. Specifically, we make two claims, (a) the perceptibility of regions as a phenomenon and (b) the distinctiveness of existence as a construct for events. The results contribute to further the understanding of TM modeling in addition to introducing some metaphysical insights.
Ensuring data privacy in machine learning models is critical, particularly in distributed settings where model gradients are typically shared among multiple parties to allow collaborative learning. Motivated by the increasing success of recovering input data from the gradients of classical models, this study addresses a central question: How hard is it to recover the input data from the gradients of quantum machine learning models? Focusing on variational quantum circuits (VQC) as learning models, we uncover the crucial role played by the dynamical Lie algebra (DLA) of the VQC ansatz in determining privacy vulnerabilities. While the DLA has previously been linked to the classical simulatability and trainability of VQC models, this work, for the first time, establishes its connection to the privacy of VQC models. In particular, we show that properties conducive to the trainability of VQCs, such as a polynomial-sized DLA, also facilitate the extraction of detailed snapshots of the input. We term this a weak privacy breach, as the snapshots enable training VQC models for distinct learning tasks without direct access to the original input. Further, we investigate the conditions for a strong privacy breach where the original input data can be recovered from these snapshots by classical or quantum-assisted polynomial time methods. We establish conditions on the encoding map such as classical simulatability, overlap with DLA basis, and its Fourier frequency characteristics that enable such a privacy breach of VQC models. Our findings thus play a crucial role in detailing the prospects of quantum privacy advantage by guiding the requirements for designing quantum machine learning models that balance trainability with robust privacy protection.
State estimation of nonlinear dynamical systems has long aimed to balance accuracy, computational efficiency, robustness, and reliability. The rapid evolution of various industries has amplified the demand for estimation frameworks that satisfy all these factors. This study introduces a neuromorphic approach for robust filtering of nonlinear dynamical systems: SNN-EMSIF (spiking neural network-extended modified sliding innovation filter). SNN-EMSIF combines the computational efficiency and scalability of SNNs with the robustness of EMSIF, an estimation framework designed for nonlinear systems with zero-mean Gaussian noise. Notably, the weight matrices are designed according to the system model, eliminating the need for a learning process. The framework's efficacy is evaluated through comprehensive Monte Carlo simulations, comparing SNN-EMSIF with EKF and EMSIF. Additionally, it is compared with SNN-EKF in the presence of modeling uncertainties and neuron loss, using RMSEs as a metric. The results demonstrate the superior accuracy and robustness of SNN-EMSIF. Further analysis of runtimes and spiking patterns reveals an impressive reduction of 85% in emitted spikes compared to possible spikes, highlighting the computational efficiency of SNN-EMSIF. This framework offers a promising solution for robust estimation in nonlinear dynamical systems, opening new avenues for efficient and reliable estimation in various industries that can benefit from neuromorphic computing.
Neural network representations of simple models, such as linear regression, are being studied increasingly to better understand the underlying principles of deep learning algorithms. However, neural representations of distributional regression models, such as the Cox model, have received little attention so far. We close this gap by proposing a framework for distributional regression using inverse flow transformations (DRIFT), which includes neural representations of the aforementioned models. We empirically demonstrate that the neural representations of models in DRIFT can serve as a substitute for their classical statistical counterparts in several applications involving continuous, ordered, time-series, and survival outcomes. We confirm that models in DRIFT empirically match the performance of several statistical methods in terms of estimation of partial effects, prediction, and aleatoric uncertainty quantification. DRIFT covers both interpretable statistical models and flexible neural networks opening up new avenues in both statistical modeling and deep learning.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.
For deploying a deep learning model into production, it needs to be both accurate and compact to meet the latency and memory constraints. This usually results in a network that is deep (to ensure performance) and yet thin (to improve computational efficiency). In this paper, we propose an efficient method to train a deep thin network with a theoretic guarantee. Our method is motivated by model compression. It consists of three stages. In the first stage, we sufficiently widen the deep thin network and train it until convergence. In the second stage, we use this well-trained deep wide network to warm up (or initialize) the original deep thin network. This is achieved by letting the thin network imitate the immediate outputs of the wide network from layer to layer. In the last stage, we further fine tune this well initialized deep thin network. The theoretical guarantee is established by using mean field analysis, which shows the advantage of layerwise imitation over traditional training deep thin networks from scratch by backpropagation. We also conduct large-scale empirical experiments to validate our approach. By training with our method, ResNet50 can outperform ResNet101, and BERT_BASE can be comparable with BERT_LARGE, where both the latter models are trained via the standard training procedures as in the literature.