The symmetric Nonnegative Matrix Factorization (NMF), a special but important class of the general NMF, has found numerous applications in data analysis such as various clustering tasks. Unfortunately, designing fast algorithms for the symmetric NMF is not as easy as for its nonsymmetric counterpart, since the latter admits the splitting property that allows state-of-the-art alternating-type algorithms. To overcome this issue, we first split the decision variable and transform the symmetric NMF to a penalized nonsymmetric one, paving the way for designing efficient alternating-type algorithms. We then show that solving the penalized nonsymmetric reformulation returns a solution to the original symmetric NMF. Moreover, we design a family of alternating-type algorithms and show that they all admit strong convergence guarantee: the generated sequence of iterates is convergent and converges at least sublinearly to a critical point of the original symmetric NMF. Finally, we conduct experiments on both synthetic data and real image clustering to support our theoretical results and demonstrate the performance of the alternating-type algorithms.
We consider a stochastic gradient descent (SGD) algorithm for solving linear inverse problems (e.g., CT image reconstruction) in the Banach space framework of variable exponent Lebesgue spaces $\ell^{(p_n)}(\mathbb{R})$. Such non-standard spaces have been recently proved to be the appropriate functional framework to enforce pixel-adaptive regularisation in signal and image processing applications. Compared to its use in Hilbert settings, however, the application of SGD in the Banach setting of $\ell^{(p_n)}(\mathbb{R})$ is not straightforward, due, in particular to the lack of a closed-form expression and the non-separability property of the underlying norm. In this manuscript, we show that SGD iterations can effectively be performed using the associated modular function. Numerical validation on both simulated and real CT data show significant improvements in comparison to SGD solutions both in Hilbert and other Banach settings, in particular when non-Gaussian or mixed noise is observed in the data.
Gaussian graphical models typically assume a homogeneous structure across all subjects, which is often restrictive in applications. In this article, we propose a weighted pseudo-likelihood approach for graphical modeling which allows different subjects to have different graphical structures depending on extraneous covariates. The pseudo-likelihood approach replaces the joint distribution by a product of the conditional distributions of each variable. We cast the conditional distribution as a heteroscedastic regression problem, with covariate-dependent variance terms, to enable information borrowing directly from the data instead of a hierarchical framework. This allows independent graphical modeling for each subject, while retaining the benefits of a hierarchical Bayes model and being computationally tractable. An efficient embarrassingly parallel variational algorithm is developed to approximate the posterior and obtain estimates of the graphs. Using a fractional variational framework, we derive asymptotic risk bounds for the estimate in terms of a novel variant of the $\alpha$-R\'{e}nyi divergence. We theoretically demonstrate the advantages of information borrowing across covariates over independent modeling. We show the practical advantages of the approach through simulation studies and illustrate the dependence structure in protein expression levels on breast cancer patients using CNV information as covariates.
This paper is concerned with low-rank matrix optimization, which has found a wide range of applications in machine learning. This problem in the special case of matrix sensing has been studied extensively through the notion of Restricted Isometry Property (RIP), leading to a wealth of results on the geometric landscape of the problem and the convergence rate of common algorithms. However, the existing results can handle the problem in the case with a general objective function subject to noisy data only when the RIP constant is close to 0. In this paper, we develop a new mathematical framework to solve the above-mentioned problem with a far less restrictive RIP constant. We prove that as long as the RIP constant of the noiseless objective is less than $1/3$, any spurious local solution of the noisy optimization problem must be close to the ground truth solution. By working through the strict saddle property, we also show that an approximate solution can be found in polynomial time. We characterize the geometry of the spurious local minima of the problem in a local region around the ground truth in the case when the RIP constant is greater than $1/3$. Compared to the existing results in the literature, this paper offers the strongest RIP bound and provides a complete theoretical analysis on the global and local optimization landscapes of general low-rank optimization problems under random corruptions from any finite-variance family.
An important challenge in Geometric Modeling is to classify polytopes with rational linear precision. Equivalently, in Algebraic Statistics one is interested in classifying scaled toric varieties, also known as discrete exponential families, for which the maximum likelihood estimator can be written in closed form as a rational function of the data (rational MLE). The toric fiber product (TFP) of statistical models is an operation to iteratively construct new models with rational MLE from lower dimensional ones. In this paper we introduce TFPs to the Geometric Modeling setting to construct polytopes with rational linear precision and give explicit formulae for their blending functions. A special case of the TFP is taking the Cartesian product of two polytopes and their blending functions. The Horn matrix of a statistical model with rational MLE is a key player in both Geometric Modeling and Algebraic Statistics; it proved to be fruitful providing a characterisation of those polytopes having the more restrictive property of strict linear precision. We give an explicit description of the Horn matrix of a TFP.
(Stochastic) bilevel optimization is a frequently encountered problem in machine learning with a wide range of applications such as meta-learning, hyper-parameter optimization, and reinforcement learning. Most of the existing studies on this problem only focused on analyzing the convergence or improving the convergence rate, while little effort has been devoted to understanding its generalization behaviors. In this paper, we conduct a thorough analysis on the generalization of first-order (gradient-based) methods for the bilevel optimization problem. We first establish a fundamental connection between algorithmic stability and generalization error in different forms and give a high probability generalization bound which improves the previous best one from $\bigO(\sqrt{n})$ to $\bigO(\log n)$, where $n$ is the sample size. We then provide the first stability bounds for the general case where both inner and outer level parameters are subject to continuous update, while existing work allows only the outer level parameter to be updated. Our analysis can be applied in various standard settings such as strongly-convex-strongly-convex (SC-SC), convex-convex (C-C), and nonconvex-nonconvex (NC-NC). Our analysis for the NC-NC setting can also be extended to a particular nonconvex-strongly-convex (NC-SC) setting that is commonly encountered in practice. Finally, we corroborate our theoretical analysis and demonstrate how iterations can affect the generalization error by experiments on meta-learning and hyper-parameter optimization.
Since their introduction the Trasformer architectures emerged as the dominating architectures for both natural language processing and, more recently, computer vision applications. An intrinsic limitation of this family of "fully-attentive" architectures arises from the computation of the dot-product attention, which grows both in memory consumption and number of operations as $O(n^2)$ where $n$ stands for the input sequence length, thus limiting the applications that require modeling very long sequences. Several approaches have been proposed so far in the literature to mitigate this issue, with varying degrees of success. Our idea takes inspiration from the world of lossy data compression (such as the JPEG algorithm) to derive an approximation of the attention module by leveraging the properties of the Discrete Cosine Transform. An extensive section of experiments shows that our method takes up less memory for the same performance, while also drastically reducing inference time. This makes it particularly suitable in real-time contexts on embedded platforms. Moreover, we assume that the results of our research might serve as a starting point for a broader family of deep neural models with reduced memory footprint. The implementation will be made publicly available at //github.com/cscribano/DCT-Former-Public
The paper proposes a new algorithm called SymBa that aims to achieve more biologically plausible learning than Back-Propagation (BP). The algorithm is based on the Forward-Forward (FF) algorithm, which is a BP-free method for training neural networks. SymBa improves the FF algorithm's convergence behavior by addressing the problem of asymmetric gradients caused by conflicting converging directions for positive and negative samples. The algorithm balances positive and negative losses to enhance performance and convergence speed. Furthermore, it modifies the FF algorithm by adding Intrinsic Class Pattern (ICP) containing class information to prevent the loss of class information during training. The proposed algorithm has the potential to improve our understanding of how the brain learns and processes information and to develop more effective and efficient artificial intelligence systems. The paper presents experimental results that demonstrate the effectiveness of SymBa algorithm compared to the FF algorithm and BP.
In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields.
This paper serves as a survey of recent advances in large margin training and its theoretical foundations, mostly for (nonlinear) deep neural networks (DNNs) that are probably the most prominent machine learning models for large-scale data in the community over the past decade. We generalize the formulation of classification margins from classical research to latest DNNs, summarize theoretical connections between the margin, network generalization, and robustness, and introduce recent efforts in enlarging the margins for DNNs comprehensively. Since the viewpoint of different methods is discrepant, we categorize them into groups for ease of comparison and discussion in the paper. Hopefully, our discussions and overview inspire new research work in the community that aim to improve the performance of DNNs, and we also point to directions where the large margin principle can be verified to provide theoretical evidence why certain regularizations for DNNs function well in practice. We managed to shorten the paper such that the crucial spirit of large margin learning and related methods are better emphasized.
Click-through rate (CTR) prediction plays a critical role in recommender systems and online advertising. The data used in these applications are multi-field categorical data, where each feature belongs to one field. Field information is proved to be important and there are several works considering fields in their models. In this paper, we proposed a novel approach to model the field information effectively and efficiently. The proposed approach is a direct improvement of FwFM, and is named as Field-matrixed Factorization Machines (FmFM, or $FM^2$). We also proposed a new explanation of FM and FwFM within the FmFM framework, and compared it with the FFM. Besides pruning the cross terms, our model supports field-specific variable dimensions of embedding vectors, which acts as soft pruning. We also proposed an efficient way to minimize the dimension while keeping the model performance. The FmFM model can also be optimized further by caching the intermediate vectors, and it only takes thousands of floating-point operations (FLOPs) to make a prediction. Our experiment results show that it can out-perform the FFM, which is more complex. The FmFM model's performance is also comparable to DNN models which require much more FLOPs in runtime.