亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Magnetic Resonance Fingerprinting (MRF) is a novel technique that simultaneously estimates multiple tissue-related parameters, such as the longitudinal relaxation time T1, the transverse relaxation time T2, off resonance frequency B0 and proton density, from a scanned object in just tens of seconds. However, the MRF method suffers from aliasing artifacts because it significantly undersamples the k-space data. In this work, we propose a compressed sensing (CS) framework for simultaneously estimating multiple tissue-related parameters based on the MRF method. It is more robust to low sampling ratio and is therefore more efficient in estimating MR parameters for all voxels of an object. Furthermore, the MRF method requires identifying the nearest atoms of the query fingerprints from the MR-signal-evolution dictionary with the L2 distance. However, we observed that the L2 distance is not always a proper metric to measure the similarities between MR Fingerprints. Adaptively learning a distance metric from the undersampled training data can significantly improve the matching accuracy of the query fingerprints. Numerical results on extensive simulated cases show that our method substantially outperforms stateof-the-art methods in terms of accuracy of parameter estimation.

相關內容

馬爾可夫隨機場(Markov Random Field),也有人翻譯為馬爾科夫隨機場,馬爾可夫隨機場是建立在馬爾可夫模型和貝葉斯理論基礎之上的,它包含兩層意思:一是什么是馬爾可夫,二是什么是隨機場。

The vulnerability of face recognition systems to morphing attacks has posed a serious security threat due to the wide adoption of face biometrics in the real world. Most existing morphing attack detection (MAD) methods require a large amount of training data and have only been tested on a few predefined attack models. The lack of good generalization properties, especially in view of the growing interest in developing novel morphing attacks, is a critical limitation with existing MAD research. To address this issue, we propose to extend MAD from supervised learning to few-shot learning and from binary detection to multiclass fingerprinting in this paper. Our technical contributions include: 1) We propose a fusion-based few-shot learning (FSL) method to learn discriminative features that can generalize to unseen morphing attack types from predefined presentation attacks; 2) The proposed FSL based on the fusion of the PRNU model and Noiseprint network is extended from binary MAD to multiclass morphing attack fingerprinting (MAF). 3) We have collected a large-scale database, which contains five face datasets and eight different morphing algorithms, to benchmark the proposed few-shot MAF (FS-MAF) method. Extensive experimental results show the outstanding performance of our fusion-based FS-MAF. The code and data will be publicly available at //github.com/nz0001na/mad maf.

Photon-efficient imaging with the single-photon light detection and ranging (LiDAR) captures the three-dimensional (3D) structure of a scene by only a few detected signal photons per pixel. However, the existing computational methods for photon-efficient imaging are pre-tuned on a restricted scenario or trained on simulated datasets. When applied to realistic scenarios whose signal-to-background ratios (SBR) and other hardware-specific properties differ from those of the original task, the model performance often significantly deteriorates. In this paper, we present a domain adversarial adaptation design to alleviate this domain shift problem by exploiting unlabeled real-world data, with significant resource savings. This method demonstrates superior performance on simulated and real-world experiments using our home-built up-conversion single-photon imaging system, which provides an efficient approach to bypass the lack of ground-truth depth information in implementing computational imaging algorithms for realistic applications.

Deep learning has achieved tremendous success by training increasingly large models, which are then compressed for practical deployment. We propose a drastically different approach to compact and optimal deep learning: We decouple the Degrees of freedom (DoF) and the actual number of parameters of a model, optimize a small DoF with predefined random linear constraints for a large model of arbitrary architecture, in one-stage end-to-end learning. Specifically, we create a recurrent parameter generator (RPG), which repeatedly fetches parameters from a ring and unpacks them onto a large model with random permutation and sign flipping to promote parameter decorrelation. We show that gradient descent can automatically find the best model under constraints with faster convergence. Our extensive experimentation reveals a log-linear relationship between model DoF and accuracy. Our RPG demonstrates remarkable DoF reduction and can be further pruned and quantized for additional run-time performance gain. For example, in terms of top-1 accuracy on ImageNet, RPG achieves $96\%$ of ResNet18's performance with only $18\%$ DoF (the equivalent of one convolutional layer) and $52\%$ of ResNet34's performance with only $0.25\%$ DoF! Our work shows a significant potential of constrained neural optimization in compact and optimal deep learning.

Learned regularization for MRI reconstruction can provide complex data-driven priors to inverse problems while still retaining the control and insight of a variational regularization method. Moreover, unsupervised learning, without paired training data, allows the learned regularizer to remain flexible to changes in the forward problem such as noise level, sampling pattern or coil sensitivities. One such approach uses generative models, trained on ground-truth images, as priors for inverse problems, penalizing reconstructions far from images the generator can produce. In this work, we utilize variational autoencoders (VAEs) that generate not only an image but also a covariance uncertainty matrix for each image. The covariance can model changing uncertainty dependencies caused by structure in the image, such as edges or objects, and provides a new distance metric from the manifold of learned images. We demonstrate these novel generative regularizers on radially sub-sampled MRI knee measurements from the fastMRI dataset and compare them to other unlearned, unsupervised and supervised methods. Our results show that the proposed method is competitive with other state-of-the-art methods and behaves consistently with changing sampling patterns and noise levels.

Many recent loss functions in deep metric learning are expressed with logarithmic and exponential forms, and they involve margin and scale as essential hyper-parameters. Since each data class has an intrinsic characteristic, several previous works have tried to learn embedding space close to the real distribution by introducing adaptive margins. However, there was no work on adaptive scales at all. We argue that both margin and scale should be adaptively adjustable during the training. In this paper, we propose a method called Adaptive Margin and Scale (AdaMS), where hyper-parameters of margin and scale are replaced with learnable parameters of adaptive margins and adaptive scales for each class. Our method is evaluated on Wall Street Journal dataset, and we achieve outperforming results for word discrimination tasks.

Radio based positioning of a user equipment (UE) based on deep learning (DL) methods using channel state information (CSI) fingerprints have shown promising results. DL models are able to capture complex properties embedded in the CSI about a particular environment and map UE's CSI to the UE's position. However, the CSI fingerprints and the DL models trained on such fingerprints are highly dependent on a particular propagation environment, which generally limits the transfer of knowledge of the DL models from one environment to another. In this paper, we propose a DL model consisting of two parts: the first part aims to learn environment independent features while the second part combines those features depending on the particular environment. To improve transfer learning, we propose a meta learning scheme for training the first part over multiple environments. We show that for positioning in a new environment, initializing a DL model with the meta learned environment independent function achieves higher UE positioning accuracy compared to regular transfer learning from one environment to the new environment, or compared to training the DL model from scratch with only fingerprints from the new environment. Our proposed scheme is able to create an environment independent function which can embed knowledge from multiple environments and more effectively learn from a new environment.

We consider optimization problems in which the goal is find a $k$-dimensional subspace of $\mathbb{R}^n$, $k<<n$, which minimizes a convex and smooth loss. Such problems generalize the fundamental task of principal component analysis (PCA) to include robust and sparse counterparts, and logistic PCA for binary data, among others. This problem could be approached either via nonconvex gradient methods with highly-efficient iterations, but for which arguing about fast convergence to a global minimizer is difficult or, via a convex relaxation for which arguing about convergence to a global minimizer is straightforward, but the corresponding methods are often inefficient in high dimensions. In this work we bridge these two approaches under a strict complementarity assumption, which in particular implies that the optimal solution to the convex relaxation is unique and is also the optimal solution to the original nonconvex problem. Our main result is a proof that a natural nonconvex gradient method which is \textit{SVD-free} and requires only a single QR-factorization of an $n\times k$ matrix per iteration, converges locally with a linear rate. We also establish linear convergence results for the nonconvex projected gradient method, and the Frank-Wolfe method when applied to the convex relaxation.

We prove new lower bounds for statistical estimation tasks under the constraint of $(\varepsilon, \delta)$-differential privacy. First, we provide tight lower bounds for private covariance estimation of Gaussian distributions. We show that estimating the covariance matrix in Frobenius norm requires $\Omega(d^2)$ samples, and in spectral norm requires $\Omega(d^{3/2})$ samples, both matching upper bounds up to logarithmic factors. We prove these bounds via our main technical contribution, a broad generalization of the fingerprinting method to exponential families. Additionally, using the private Assouad method of Acharya, Sun, and Zhang, we show a tight $\Omega(d/(\alpha^2 \varepsilon))$ lower bound for estimating the mean of a distribution with bounded covariance to $\alpha$-error in $\ell_2$-distance. Prior known lower bounds for all these problems were either polynomially weaker or held under the stricter condition of $(\varepsilon,0)$-differential privacy.

Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.

The time and effort involved in hand-designing deep neural networks is immense. This has prompted the development of Neural Architecture Search (NAS) techniques to automate this design. However, NAS algorithms tend to be slow and expensive; they need to train vast numbers of candidate networks to inform the search process. This could be alleviated if we could partially predict a network's trained accuracy from its initial state. In this work, we examine the overlap of activations between datapoints in untrained networks and motivate how this can give a measure which is usefully indicative of a network's trained performance. We incorporate this measure into a simple algorithm that allows us to search for powerful networks without any training in a matter of seconds on a single GPU, and verify its effectiveness on NAS-Bench-101, NAS-Bench-201, NATS-Bench, and Network Design Spaces. Our approach can be readily combined with more expensive search methods; we examine a simple adaptation of regularised evolutionary search. Code for reproducing our experiments is available at //github.com/BayesWatch/nas-without-training.

北京阿比特科技有限公司