亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Discriminative Feature Feedback is a setting proposed by Dastupta et al. (2018), which provides a protocol for interactive learning based on feature explanations that are provided by a human teacher. The features distinguish between the labels of pairs of possibly similar instances. That work has shown that learning in this model can have considerable statistical and computational advantages over learning in standard label-based interactive learning models. In this work, we provide new robust interactive learning algorithms for the Discriminative Feature Feedback model, with mistake bounds that are significantly lower than those of previous robust algorithms for this setting. In the adversarial setting, we reduce the dependence on the number of protocol exceptions from quadratic to linear. In addition, we provide an algorithm for a slightly more restricted model, which obtains an even smaller mistake bound for large models with many exceptions. In the stochastic setting, we provide the first algorithm that converges to the exception rate with a polynomial sample complexity. Our algorithm and analysis for the stochastic setting involve a new construction that we call Feature Influence, which may be of wider applicability.

相關內容

The study of robustness has received much attention due to its inevitability in data-driven settings where many systems face uncertainty. One such example of concern is Bayesian Optimization (BO), where uncertainty is multi-faceted, yet there only exists a limited number of works dedicated to this direction. In particular, there is the work of Kirschner et al. (2020), which bridges the existing literature of Distributionally Robust Optimization (DRO) by casting the BO problem from the lens of DRO. While this work is pioneering, it admittedly suffers from various practical shortcomings such as finite contexts assumptions, leaving behind the main question Can one devise a computationally tractable algorithm for solving this DRO-BO problem? In this work, we tackle this question to a large degree of generality by considering robustness against data-shift in $\phi$-divergences, which subsumes many popular choices, such as the $\chi^2$-divergence, Total Variation, and the extant Kullback-Leibler (KL) divergence. We show that the DRO-BO problem in this setting is equivalent to a finite-dimensional optimization problem which, even in the continuous context setting, can be easily implemented with provable sublinear regret bounds. We then show experimentally that our method surpasses existing methods, attesting to the theoretical results.

In this paper, we address the dichotomy between heterogeneous models and simultaneous training in Federated Learning (FL) via a clustering framework. We define a new clustering model for FL based on the (optimal) local models of the users: two users belong to the same cluster if their local models are close; otherwise they belong to different clusters. A standard algorithm for clustered FL is proposed in \cite{ghosh_efficient_2021}, called \texttt{IFCA}, which requires \emph{suitable} initialization and the knowledge of hyper-parameters like the number of clusters (which is often quite difficult to obtain in practical applications) to converge. We propose an improved algorithm, \emph{Successive Refine Federated Clustering Algorithm} (\texttt{SR-FCA}), which removes such restrictive assumptions. \texttt{SR-FCA} treats each user as a singleton cluster as an initialization, and then successively refine the cluster estimation via exploiting similar users belonging to the same cluster. In any intermediate step, \texttt{SR-FCA} uses a robust federated learning algorithm within each cluster to exploit simultaneous training and to correct clustering errors. Furthermore, \texttt{SR-FCA} does not require any \emph{good} initialization (warm start), both in theory and practice. We show that with proper choice of learning rate, \texttt{SR-FCA} incurs arbitrarily small clustering error. Additionally, we validate the performance of our algorithm on standard FL datasets in non-convex problems like neural nets, and we show the benefits of \texttt{SR-FCA} over baselines.

In this work, we tackle the problem of open-ended learning by introducing a method that simultaneously evolves agents and increasingly challenging environments. Unlike previous open-ended approaches that optimize agents using a fixed neural network topology, we hypothesize that generalization can be improved by allowing agents' controllers to become more complex as they encounter more difficult environments. Our method, Augmentative Topology EPOET (ATEP), extends the Enhanced Paired Open-Ended Trailblazer (EPOET) algorithm by allowing agents to evolve their own neural network structures over time, adding complexity and capacity as necessary. Empirical results demonstrate that ATEP results in general agents capable of solving more environments than a fixed-topology baseline. We also investigate mechanisms for transferring agents between environments and find that a species-based approach further improves the performance and generalization of agents.

Neural ordinary differential equations (Neural ODEs) model continuous time dynamics as differential equations parametrized with neural networks. Thanks to their modeling flexibility, they have been adopted for multiple tasks where the continuous time nature of the process is specially relevant, as in system identification and time series analysis. When applied in a control setting, it is possible to adapt their use to approximate optimal nonlinear feedback policies. This formulation follows the same approach as policy gradients in reinforcement learning, covering the case where the environment consists of known deterministic dynamics given by a system of differential equations. The white box nature of the model specification allows the direct calculation of policy gradients through sensitivity analysis, avoiding the inexact and inefficient gradient estimation through sampling. In this work we propose the use of a neural control policy posed as a Neural ODE to solve general nonlinear optimal control problems while satisfying both state and control constraints, which are crucial for real world scenarios. Since the state feedback policy partially modifies the model dynamics, the whole space phase of the system is reshaped upon the optimization. This approach is a sensible approximation to the historically intractable closed loop solution of nonlinear control problems that efficiently exploits the availability of a dynamical system model.

Variable selection is crucial for sparse modeling in this age of big data. Missing values are common in data, and make variable selection more complicated. The approach of multiple imputation (MI) results in multiply imputed datasets for missing values, and has been widely applied in various variable selection procedures. However, directly performing variable selection on the whole MI data or bootstrapped MI data may not be worthy in terms of computation cost. To fast identify the active variables in the linear regression model, we propose the adaptive grafting procedure with three pooling rules on MI data. The proposed methods proceed iteratively, which starts from finding the active variables based on the complete case subset and then expand the working data matrix with both the number of active variables and available observations. A comprehensive simulation study shows the selection accuracy in different aspects and computational efficiency of the proposed methods. Two real-life examples illustrate the strength of the proposed methods.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

While recent studies on semi-supervised learning have shown remarkable progress in leveraging both labeled and unlabeled data, most of them presume a basic setting of the model is randomly initialized. In this work, we consider semi-supervised learning and transfer learning jointly, leading to a more practical and competitive paradigm that can utilize both powerful pre-trained models from source domain as well as labeled/unlabeled data in the target domain. To better exploit the value of both pre-trained weights and unlabeled target examples, we introduce adaptive consistency regularization that consists of two complementary components: Adaptive Knowledge Consistency (AKC) on the examples between the source and target model, and Adaptive Representation Consistency (ARC) on the target model between labeled and unlabeled examples. Examples involved in the consistency regularization are adaptively selected according to their potential contributions to the target task. We conduct extensive experiments on several popular benchmarks including CUB-200-2011, MIT Indoor-67, MURA, by fine-tuning the ImageNet pre-trained ResNet-50 model. Results show that our proposed adaptive consistency regularization outperforms state-of-the-art semi-supervised learning techniques such as Pseudo Label, Mean Teacher, and MixMatch. Moreover, our algorithm is orthogonal to existing methods and thus able to gain additional improvements on top of MixMatch and FixMatch. Our code is available at //github.com/SHI-Labs/Semi-Supervised-Transfer-Learning.

Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.

When labeled training data is scarce, a promising data augmentation approach is to generate visual features of unknown classes using their attributes. To learn the class conditional distribution of CNN features, these models rely on pairs of image features and class attributes. Hence, they can not make use of the abundance of unlabeled data samples. In this paper, we tackle any-shot learning problems i.e. zero-shot and few-shot, in a unified feature generating framework that operates in both inductive and transductive learning settings. We develop a conditional generative model that combines the strength of VAE and GANs and in addition, via an unconditional discriminator, learns the marginal feature distribution of unlabeled images. We empirically show that our model learns highly discriminative CNN features for five datasets, i.e. CUB, SUN, AWA and ImageNet, and establish a new state-of-the-art in any-shot learning, i.e. inductive and transductive (generalized) zero- and few-shot learning settings. We also demonstrate that our learned features are interpretable: we visualize them by inverting them back to the pixel space and we explain them by generating textual arguments of why they are associated with a certain label.

Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.

北京阿比特科技有限公司