We study the relationship between certain Groebner bases for zero dimensional ideals, and the interpolation condition functionals of ideal interpolation. Ideal interpolation is defined by a linear idempotent projector whose kernel is a polynomial ideal. In this paper, we propose the notion of "reverse" complete reduced basis. Based on the notion, we present a fast algorithm to compute the reduced Groebner basis for the kernel of ideal projector under an arbitrary compatible ordering. As an application, we show that knowing the affine variety makes available information concerning the reduced Groebner basis.
We propose a numerical algorithm for the computation of multi-marginal optimal transport (MMOT) problems involving general measures that are not necessarily discrete. By developing a relaxation scheme in which marginal constraints are replaced by finitely many linear constraints and by proving a specifically tailored duality result for this setting, we approximate the MMOT problem by a linear semi-infinite optimization problem. Moreover, we are able to recover a feasible and approximately optimal solution of the MMOT problem, and its sub-optimality can be controlled to be arbitrarily close to 0 under mild conditions. The developed relaxation scheme leads to a numerical algorithm which can compute a feasible approximate optimizer of the MMOT problem whose theoretical sub-optimality can be chosen to be arbitrarily small. Besides the approximate optimizer, the algorithm is also able to compute both an upper bound and a lower bound on the optimal value of the MMOT problem. The difference between the computed bounds provides an explicit upper bound on the sub-optimality of the computed approximate optimizer. Through a numerical example, we demonstrate that the proposed algorithm is capable of computing a high-quality solution of an MMOT problem involving as many as 50 marginals along with an explicit estimate of its sub-optimality that is much less conservative compared to the theoretical estimate.
Effective application of mathematical models to interpret biological data and make accurate predictions often requires that model parameters are identifiable. Approaches to assess the so-called structural identifiability of models are well-established for ordinary differential equation models, yet there are no commonly adopted approaches that can be applied to assess the structural identifiability of the partial differential equation (PDE) models that are requisite to capture spatial features inherent to many phenomena. The differential algebra approach to structural identifiability has recently been demonstrated to be applicable to several specific PDE models. In this brief article, we present general methodology for performing structural identifiability analysis on partially observed reaction-advection-diffusion (RAD) PDE models that are linear in the unobserved quantities. We show that the differential algebra approach can always, in theory, be applied to such models. Moreover, despite the perceived complexity introduced by the addition of advection and diffusion terms, identifiability of spatial analogues of non-spatial models cannot decrease in structural identifiability. We conclude by discussing future possibilities and the computational cost of performing structural identifiability analysis on more general PDE models.
This essay provides a comprehensive analysis of the optimization and performance evaluation of various routing algorithms within the context of computer networks. Routing algorithms are critical for determining the most efficient path for data transmission between nodes in a network. The efficiency, reliability, and scalability of a network heavily rely on the choice and optimization of its routing algorithm. This paper begins with an overview of fundamental routing strategies, including shortest path, flooding, distance vector, and link state algorithms, and extends to more sophisticated techniques.
Quantum-inspired classical algorithms provide us with a new way to understand the computational power of quantum computers for practically-relevant problems, especially in machine learning. In the past several years, numerous efficient algorithms for various tasks have been found, while an analysis of lower bounds is still missing. Using communication complexity, in this work we propose the first method to study lower bounds for these tasks. We mainly focus on lower bounds for solving linear regressions, supervised clustering, principal component analysis, recommendation systems, and Hamiltonian simulations. More precisely, we show that for linear regressions, in the row-sparse case, the lower bound is quadratic in the Frobenius norm of the underlying matrix, which is tight. In the dense case, with an extra assumption on the accuracy we obtain that the lower bound is quartic in the Frobenius norm, which matches the upper bound. For supervised clustering, we obtain a tight lower bound that is quartic in the Frobenius norm. For the other three tasks, we obtain a lower bound that is quadratic in the Frobenius norm, and the known upper bound is quartic in the Frobenius norm. Through this research, we find that large quantum speedup can exist for sparse, high-rank, well-conditioned matrix-related problems. Finally, we extend our method to study lower bounds analysis of quantum query algorithms for matrix-related problems. Some applications are given.
Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequately in relation to the underlying research problem. This could be attributed to a lack of accessibility of metric-related knowledge: While taking into account the individual strengths, weaknesses, and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multi-stage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides the first reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Focusing on biomedical image analysis but with the potential of transfer to other fields, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. To facilitate comprehension, illustrations and specific examples accompany each pitfall. As a structured body of information accessible to researchers of all levels of expertise, this work enhances global comprehension of a key topic in image analysis validation.
We study the connection between the concavity properties of a measure $\nu$ and the convexity properties of the associated relative entropy $D(\cdot \Vert \nu)$ along optimal transport. As a corollary we prove a new dimensional Brunn-Minkowski inequality for centered star-shaped bodies, when the measure $\nu$ is log-concave with a p-homogeneous potential (such as the Gaussian measure). Our method allows us to go beyond the usual convexity assumption on the sets that is fundamentally essential for the standard differential-geometric technique in this area. We then take a finer look at the convexity properties of the Gaussian relative entropy, which yields new functional inequalities. First we obtain curvature and dimensional reinforcements to Otto--Villani's "HWI" inequality in the Gauss space, when restricted to even strongly log-concave measures. As corollaries, we obtain improved versions of Gross' logarithmic Sobolev inequality and Talgrand's transportation cost inequality in this setting.
We propose a novel algorithm for the support estimation of partially known Gaussian graphical models that incorporates prior information about the underlying graph. In contrast to classical approaches that provide a point estimate based on a maximum likelihood or a maximum a posteriori criterion using (simple) priors on the precision matrix, we consider a prior on the graph and rely on annealed Langevin diffusion to generate samples from the posterior distribution. Since the Langevin sampler requires access to the score function of the underlying graph prior, we use graph neural networks to effectively estimate the score from a graph dataset (either available beforehand or generated from a known distribution). Numerical experiments demonstrate the benefits of our approach.
Mass lumping techniques are commonly employed in explicit time integration schemes for problems in structural dynamics and both avoid solving costly linear systems with the consistent mass matrix and increase the critical time step. In isogeometric analysis, the critical time step is constrained by so-called "outlier" frequencies, representing the inaccurate high frequency part of the spectrum. Removing or dampening these high frequencies is paramount for fast explicit solution techniques. In this work, we propose robust mass lumping and outlier removal techniques for nontrivial geometries, including multipatch and trimmed geometries. Our lumping strategies provably do not deteriorate (and often improve) the CFL condition of the original problem and are combined with deflation techniques to remove persistent outlier frequencies. Numerical experiments reveal the advantages of the method, especially for simulations covering large time spans where they may halve the number of iterations with little or no effect on the numerical solution.
We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.
Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.