亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Learning from humans allows non-experts to program robots with ease, lowering the resources required to build complex robotic solutions. Nevertheless, such data-driven approaches often lack the ability to provide guarantees regarding their learned behaviors, which is critical for avoiding failures and/or accidents. In this work, we focus on reaching/point-to-point motions, where robots must always reach their goal, independently of their initial state. This can be achieved by modeling motions as dynamical systems and ensuring that they are globally asymptotically stable. Hence, we introduce a novel Contrastive Learning loss for training Deep Neural Networks (DNN) that, when used together with an Imitation Learning loss, enforces the aforementioned stability in the learned motions. Differently from previous work, our method does not restrict the structure of its function approximator, enabling its use with arbitrary DNNs and allowing it to learn complex motions with high accuracy. We validate it using datasets and a real robot. In the former case, motions are 2 and 4 dimensional, modeled as first- and second-order dynamical systems. In the latter, motions are 3, 4, and 6 dimensional, of first and second order, and are used to control a 7DoF robot manipulator in its end effector space and joint space. More details regarding the real-world experiments are presented in: \url{//youtu.be/OM-2edHBRfc}.

相關內容

Library migration, which re-implements the same software behavior by using a different library instead of using the current one, has been widely observed in software evolution. One essential part of library migration is to find an analogical API that could provide the same functionality as current ones. However, given the large number of libraries/APIs, manually finding an analogical API could be very time-consuming and error-prone. Researchers have developed multiple automated analogical API recommendation techniques. Documentation-based methods have particularly attracted significant interest. Despite their potential, these methods have limitations, such as a lack of comprehensive semantic understanding in documentation and scalability challenges. In this work, we propose KGE4AR, a novel documentation-based approach that leverages knowledge graph (KG) embedding to recommend analogical APIs during library migration. Specifically, KGE4AR proposes a novel unified API KG to comprehensively and structurally represent three types of knowledge in documentation, which can better capture the high-level semantics. Moreover, KGE4AR then proposes to embed the unified API KG into vectors, enabling more effective and scalable similarity calculation. We build KGE4AR' s unified API KG for 35,773 Java libraries and assess it in two API recommendation scenarios: with and without target libraries. Our results show that KGE4AR substantially outperforms state-of-the-art documentation-based techniques in both evaluation scenarios in terms of all metrics (e.g., 47.1%-143.0% and 11.7%-80.6% MRR improvements in each scenario). Additionally, we explore KGE4AR' s scalability, confirming its effective scaling with the growing number of libraries.

Spurious correlations occur when a model learns unreliable features from the data and are a well-known drawback of data-driven learning. Although there are several algorithms proposed to mitigate it, we are yet to jointly derive the indicators of spurious correlations. As a result, the solutions built upon standalone hypotheses fail to beat simple ERM baselines. We collect some of the commonly studied hypotheses behind the occurrence of spurious correlations and investigate their influence on standard ERM baselines using synthetic datasets generated from causal graphs. Subsequently, we observe patterns connecting these hypotheses and model design choices.

Despite the promising results of machine learning models in malware detection, they face the problem of concept drift due to malware constant evolution. This leads to a decline in performance over time, as the data distribution of the new files differs from the training one, requiring regular model update. In this work, we propose a model-agnostic protocol to improve a baseline neural network to handle with the drift problem. We show the importance of feature reduction and training with the most recent validation set possible, and propose a loss function named Drift-Resilient Binary Cross-Entropy, an improvement to the classical Binary Cross-Entropy more effective against drift. We train our model on the EMBER dataset (2018) and evaluate it on a dataset of recent malicious files, collected between 2020 and 2023. Our improved model shows promising results, detecting 15.2% more malware than a baseline model.

It is not an exaggeration to say that the recent progress in artificial intelligence technology depends on large-scale and high-quality data. Simultaneously, a prevalent issue exists everywhere: the budget for data labeling is constrained. Active learning is a prominent approach for addressing this issue, where valuable data for labeling is selected through a model and utilized to iteratively adjust the model. However, due to the limited amount of data in each iteration, the model is vulnerable to bias; thus, it is more likely to yield overconfident predictions. In this paper, we present two novel methods to address the problem of overconfidence that arises in the active learning scenario. The first is an augmentation strategy named Cross-Mix-and-Mix (CMaM), which aims to calibrate the model by expanding the limited training distribution. The second is a selection strategy named Ranked Margin Sampling (RankedMS), which prevents choosing data that leads to overly confident predictions. Through various experiments and analyses, we are able to demonstrate that our proposals facilitate efficient data selection by alleviating overconfidence, even though they are readily applicable.

Recent work has demonstrated the significant potential of denoising diffusion models for generating human motion, including text-to-motion capabilities. However, these methods are restricted by the paucity of annotated motion data, a focus on single-person motions, and a lack of detailed control. In this paper, we introduce three forms of composition based on diffusion priors: sequential, parallel, and model composition. Using sequential composition, we tackle the challenge of long sequence generation. We introduce DoubleTake, an inference-time method with which we generate long animations consisting of sequences of prompted intervals and their transitions, using a prior trained only for short clips. Using parallel composition, we show promising steps toward two-person generation. Beginning with two fixed priors as well as a few two-person training examples, we learn a slim communication block, ComMDM, to coordinate interaction between the two resulting motions. Lastly, using model composition, we first train individual priors to complete motions that realize a prescribed motion for a given joint. We then introduce DiffusionBlending, an interpolation mechanism to effectively blend several such models to enable flexible and efficient fine-grained joint and trajectory-level control and editing. We evaluate the composition methods using an off-the-shelf motion diffusion model, and further compare the results to dedicated models trained for these specific tasks.

The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.

Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司