亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently, Zero-Shot Node Classification (ZNC) has been an emerging and crucial task in graph data analysis. This task aims to predict nodes from unseen classes which are unobserved in the training process. Existing work mainly utilizes Graph Neural Networks (GNNs) to associate features' prototypes and labels' semantics thus enabling knowledge transfer from seen to unseen classes. However, the multi-faceted semantic orientation in the feature-semantic alignment has been neglected by previous work, i.e. the content of a node usually covers diverse topics that are relevant to the semantics of multiple labels. It's necessary to separate and judge the semantic factors that tremendously affect the cognitive ability to improve the generality of models. To this end, we propose a Knowledge-Aware Multi-Faceted framework (KMF) that enhances the richness of label semantics via the extracted KG (Knowledge Graph)-based topics. And then the content of each node is reconstructed to a topic-level representation that offers multi-faceted and fine-grained semantic relevancy to different labels. Due to the particularity of the graph's instance (i.e., node) representation, a novel geometric constraint is developed to alleviate the problem of prototype drift caused by node information aggregation. Finally, we conduct extensive experiments on several public graph datasets and design an application of zero-shot cross-domain recommendation. The quantitative results demonstrate both the effectiveness and generalization of KMF with the comparison of state-of-the-art baselines.

相關內容

Representation learning on text-attributed graphs (TAGs) has become a critical research problem in recent years. A typical example of a TAG is a paper citation graph, where the text of each paper serves as node attributes. Initial graph neural network (GNN) pipelines handled these text attributes by transforming them into shallow or hand-crafted features, such as skip-gram or bag-of-words features. Recent efforts have focused on enhancing these pipelines with language models (LMs), which typically demand intricate designs and substantial computational resources. With the advent of powerful large language models (LLMs) such as GPT or Llama2, which demonstrate an ability to reason and to utilize general knowledge, there is a growing need for techniques which combine the textual modelling abilities of LLMs with the structural learning capabilities of GNNs. Hence, in this work, we focus on leveraging LLMs to capture textual information as features, which can be used to boost GNN performance on downstream tasks. A key innovation is our use of explanations as features: we prompt an LLM to perform zero-shot classification, request textual explanations for its decision-making process, and design an LLM-to-LM interpreter to translate these explanations into informative features that enhance downstream GNNs. Our experiments demonstrate that our method achieves state-of-the-art results on well-established TAG datasets, including Cora, PubMed, ogbn-arxiv, as well as our newly introduced dataset, arXiv-2023. Furthermore, our method significantly speeds up training, achieving a 2.88 times improvement over the closest baseline on ogbn-arxiv. Lastly, we believe the versatility of the proposed method extends beyond TAGs and holds the potential to enhance other tasks involving graph-text data~\footnote{Our codes and datasets are available at: \url{//github.com/XiaoxinHe/TAPE}}.

Graph Neural Networks (GNNs) have emerged as a powerful representation learning framework for graph-structured data. A key limitation of conventional GNNs is their representation of each node with a singular feature vector, potentially overlooking intricate details about individual node features. Here, we propose an Attention-based Message-Passing layer for GNNs (AMPNet) that encodes individual features per node and models feature-level interactions through cross-node attention during message-passing steps. We demonstrate the abilities of AMPNet through extensive benchmarking on real-world biological systems such as fMRI brain activity recordings and spatial genomic data, improving over existing baselines by 20% on fMRI signal reconstruction, and further improving another 8% with positional embedding added. Finally, we validate the ability of AMPNet to uncover meaningful feature-level interactions through case studies on biological systems. We anticipate that our architecture will be highly applicable to graph-structured data where node entities encompass rich feature-level information.

Large Language Models (LLMs) have the ability to solve a variety of tasks, such as text summarization and mathematical questions, just out of the box, but they are often trained with a single task in mind. Due to high computational costs, the current trend is to use prompt instruction tuning to better adjust monolithic, pretrained LLMs for new -- but often individual -- downstream tasks. Thus, how one would expand prompt tuning to handle -- concomitantly -- heterogeneous tasks and data distributions is a widely open question. To address this gap, we suggest the use of \emph{Mixture of Prompts}, or MoPs, associated with smart gating functionality: the latter -- whose design is one of the contributions of this paper -- can identify relevant skills embedded in different groups of prompts and dynamically assign combined experts (i.e., collection of prompts), based on the target task. Additionally, MoPs are empirically agnostic to any model compression technique applied -- for efficiency reasons -- as well as instruction data source and task composition. In practice, MoPs can simultaneously mitigate prompt training "interference" in multi-task, multi-source scenarios (e.g., task and data heterogeneity across sources), as well as possible implications from model approximations. As a highlight, MoPs manage to decrease final perplexity from $\sim20\%$ up to $\sim70\%$, as compared to baselines, in the federated scenario, and from $\sim 3\%$ up to $\sim30\%$ in the centralized scenario.

Large Language Models have not yet been broadly adapted for the analysis of scientific datasets due in part to the unique difficulties of tokenizing numbers. We propose xVal, a numerical encoding scheme that represents any real number using just a single token. xVal represents a given real number by scaling a dedicated embedding vector by the number value. Combined with a modified number-inference approach, this strategy renders the model end-to-end continuous when considered as a map from the numbers of the input string to those of the output string. This leads to an inductive bias that is generally more suitable for applications in scientific domains. We empirically evaluate our proposal on a number of synthetic and real-world datasets. Compared with existing number encoding schemes, we find that xVal is more token-efficient and demonstrates improved generalization.

Simultaneous localization and mapping (SLAM) is critical to the implementation of autonomous driving. Most LiDAR-inertial SLAM algorithms assume a static environment, leading to unreliable localization in dynamic environments. Moreover, the accurate tracking of moving objects is of great significance for the control and planning of autonomous vehicles. This study proposes LIMOT, a tightly-coupled multi-object tracking and LiDAR-inertial odometry system that is capable of accurately estimating the poses of both ego-vehicle and objects. We propose a trajectory-based dynamic feature filtering method, which filters out features belonging to moving objects by leveraging tracking results before scan-matching. Factor graph-based optimization is then conducted to optimize the bias of the IMU and the poses of both the ego-vehicle and surrounding objects in a sliding window. Experiments conducted on the KITTI tracking dataset and self-collected dataset show that our method achieves better pose and tracking accuracy than our previous work DL-SLOT and other baseline methods. Our open-source implementation is available at //github.com/tiev-tongji/LIMOT.

Graph Neural Networks (GNNs) have already been widely used in various graph mining tasks. However, recent works reveal that the learned weights (channels) in well-trained GNNs are highly redundant, which inevitably limits the performance of GNNs. Instead of removing these redundant channels for efficiency consideration, we aim to reactivate them to enlarge the representation capacity of GNNs for effective graph learning. In this paper, we propose to substitute these redundant channels with other informative channels to achieve this goal. We introduce a novel GNN learning framework named AKE-GNN, which performs the Adaptive Knowledge Exchange strategy among multiple graph views generated by graph augmentations. AKE-GNN first trains multiple GNNs each corresponding to one graph view to obtain informative channels. Then, AKE-GNN iteratively exchanges redundant channels in the weight parameter matrix of one GNN with informative channels of another GNN in a layer-wise manner. Additionally, existing GNNs can be seamlessly incorporated into our framework. AKE-GNN achieves superior performance compared with various baselines across a suite of experiments on node classification, link prediction, and graph classification. In particular, we conduct a series of experiments on 15 public benchmark datasets, 8 popular GNN models, and 3 graph tasks and show that AKE-GNN consistently outperforms existing popular GNN models and even their ensembles. Extensive ablation studies and analyses on knowledge exchange methods validate the effectiveness of AKE-GNN.

Multi-task learning (MTL) aims to empower a model to tackle multiple tasks simultaneously. A recent development known as task arithmetic has revealed that several models, each fine-tuned for distinct tasks, can be directly merged into a single model to execute MTL without necessitating a retraining process using the initial training data. Nevertheless, this direct addition of models often leads to a significant deterioration in the overall performance of the merged model. This decline occurs due to potential conflicts and intricate correlations among the multiple tasks. Consequently, the challenge emerges of how to merge pre-trained models more effectively without using their original training data. This paper introduces an innovative technique called Adaptive Model Merging (AdaMerging). This approach aims to autonomously learn the coefficients for model merging, either in a task-wise or layer-wise manner, without relying on the original training data. Specifically, our AdaMerging method operates as an automatic, unsupervised task arithmetic scheme. It leverages entropy minimization on unlabeled test samples from the multi-task setup as a surrogate objective function to iteratively refine the merging coefficients of the multiple models. Our experimental findings across eight tasks demonstrate the efficacy of the AdaMerging scheme we put forth. Compared to the current state-of-the-art task arithmetic merging scheme, AdaMerging showcases a remarkable 11\% improvement in performance. Notably, AdaMerging also exhibits superior generalization capabilities when applied to unseen downstream tasks. Furthermore, it displays a significantly enhanced robustness to data distribution shifts that may occur during the testing phase.

Semi-supervised learning on class-imbalanced data, although a realistic problem, has been under studied. While existing semi-supervised learning (SSL) methods are known to perform poorly on minority classes, we find that they still generate high precision pseudo-labels on minority classes. By exploiting this property, in this work, we propose Class-Rebalancing Self-Training (CReST), a simple yet effective framework to improve existing SSL methods on class-imbalanced data. CReST iteratively retrains a baseline SSL model with a labeled set expanded by adding pseudo-labeled samples from an unlabeled set, where pseudo-labeled samples from minority classes are selected more frequently according to an estimated class distribution. We also propose a progressive distribution alignment to adaptively adjust the rebalancing strength dubbed CReST+. We show that CReST and CReST+ improve state-of-the-art SSL algorithms on various class-imbalanced datasets and consistently outperform other popular rebalancing methods.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.

北京阿比特科技有限公司