Neural Radiance Fields (NeRFs) learn to represent a 3D scene from just a set of registered images. Increasing sizes of a scene demands more complex functions, typically represented by neural networks, to capture all details. Training and inference then involves querying the neural network millions of times per image, which becomes impractically slow. Since such complex functions can be replaced by multiple simpler functions to improve speed, we show that a hierarchy of Voronoi diagrams is a suitable choice to partition the scene. By equipping each Voronoi cell with its own NeRF, our approach is able to quickly learn a scene representation. We propose an intuitive partitioning of the space that increases quality gains during training by distributing information evenly among the networks and avoids artifacts through a top-down adaptive refinement. Our framework is agnostic to the underlying NeRF method and easy to implement, which allows it to be applied to various NeRF variants for improved learning and rendering speeds.
Diffusion model based language-guided image editing has achieved great success recently. However, existing state-of-the-art diffusion models struggle with rendering correct text and text style during generation. To tackle this problem, we propose a universal self-supervised text editing diffusion model (DiffUTE), which aims to replace or modify words in the source image with another one while maintaining its realistic appearance. Specifically, we build our model on a diffusion model and carefully modify the network structure to enable the model for drawing multilingual characters with the help of glyph and position information. Moreover, we design a self-supervised learning framework to leverage large amounts of web data to improve the representation ability of the model. Experimental results show that our method achieves an impressive performance and enables controllable editing on in-the-wild images with high fidelity. Our code will be avaliable in \url{//github.com/chenhaoxing/DiffUTE}.
Recently, the ever-increasing demand for bandwidth in multi-modal communication systems requires a paradigm shift. Powered by deep learning, semantic communications are applied to multi-modal scenarios to boost communication efficiency and save communication resources. However, the existing end-to-end neural network (NN) based framework without the channel encoder/decoder is incompatible with modern digital communication systems. Moreover, most end-to-end designs are task-specific and require re-design and re-training for new tasks, which limits their applications. In this paper, we propose a distributed multi-modal semantic communication framework incorporating the conventional channel encoder/decoder. We adopt NN-based semantic encoder and decoder to extract correlated semantic information contained in different modalities, including speech, text, and image. Based on the proposed framework, we further establish a general rate-adaptive coding mechanism for various types of multi-modal semantic tasks. In particular, we utilize unequal error protection based on semantic importance, which is derived by evaluating the distortion bound of each modality. We further formulate and solve an optimization problem that aims at minimizing inference delay while maintaining inference accuracy for semantic tasks. Numerical results show that the proposed mechanism fares better than both conventional communication and existing semantic communication systems in terms of task performance, inference delay, and deployment complexity.
Value decomposition methods have gained popularity in the field of cooperative multi-agent reinforcement learning. However, almost all existing methods follow the principle of Individual Global Max (IGM) or its variants, which limits their problem-solving capabilities. To address this, we propose a dual self-awareness value decomposition framework, inspired by the notion of dual self-awareness in psychology, that entirely rejects the IGM premise. Each agent consists of an ego policy for action selection and an alter ego value function to solve the credit assignment problem. The value function factorization can ignore the IGM assumption by utilizing an explicit search procedure. On the basis of the above, we also suggest a novel anti-ego exploration mechanism to avoid the algorithm becoming stuck in a local optimum. As the first fully IGM-free value decomposition method, our proposed framework achieves desirable performance in various cooperative tasks.
Facial action unit (AU) detection is challenging due to the difficulty in capturing correlated information from subtle and dynamic AUs. Existing methods often resort to the localization of correlated regions of AUs, in which predefining local AU attentions by correlated facial landmarks often discards essential parts, or learning global attention maps often contains irrelevant areas. Furthermore, existing relational reasoning methods often employ common patterns for all AUs while ignoring the specific way of each AU. To tackle these limitations, we propose a novel adaptive attention and relation (AAR) framework for facial AU detection. Specifically, we propose an adaptive attention regression network to regress the global attention map of each AU under the constraint of attention predefinition and the guidance of AU detection, which is beneficial for capturing both specified dependencies by landmarks in strongly correlated regions and facial globally distributed dependencies in weakly correlated regions. Moreover, considering the diversity and dynamics of AUs, we propose an adaptive spatio-temporal graph convolutional network to simultaneously reason the independent pattern of each AU, the inter-dependencies among AUs, as well as the temporal dependencies. Extensive experiments show that our approach (i) achieves competitive performance on challenging benchmarks including BP4D, DISFA, and GFT in constrained scenarios and Aff-Wild2 in unconstrained scenarios, and (ii) can precisely learn the regional correlation distribution of each AU.
Robotic manipulation systems operating in complex environments rely on perception systems that provide information about the geometry (pose and 3D shape) of the objects in the scene along with other semantic information such as object labels. This information is then used for choosing the feasible grasps on relevant objects. In this paper, we present a novel method to provide this geometric and semantic information of all objects in the scene as well as feasible grasps on those objects simultaneously. The main advantage of our method is its speed as it avoids sequential perception and grasp planning steps. With detailed quantitative analysis, we show that our method delivers competitive performance compared to the state-of-the-art dedicated methods for object shape, pose, and grasp predictions while providing fast inference at 30 frames per second speed.
Many convolutional neural networks (CNNs) rely on progressive downsampling of their feature maps to increase the network's receptive field and decrease computational cost. However, this comes at the price of losing granularity in the feature maps, limiting the ability to correctly understand images or recover fine detail in dense prediction tasks. To address this, common practice is to replace the last few downsampling operations in a CNN with dilated convolutions, allowing to retain the feature map resolution without reducing the receptive field, albeit increasing the computational cost. This allows to trade off predictive performance against cost, depending on the output feature resolution. By either regularly downsampling or not downsampling the entire feature map, existing work implicitly treats all regions of the input image and subsequent feature maps as equally important, which generally does not hold. We propose an adaptive downsampling scheme that generalizes the above idea by allowing to process informative regions at a higher resolution than less informative ones. In a variety of experiments, we demonstrate the versatility of our adaptive downsampling strategy and empirically show that it improves the cost-accuracy trade-off of various established CNNs.
In passage retrieval system, the initial passage retrieval results may be unsatisfactory, which can be refined by a reranking scheme. Existing solutions to passage reranking focus on enriching the interaction between query and each passage separately, neglecting the context among the top-ranked passages in the initial retrieval list. To tackle this problem, we propose a Hybrid and Collaborative Passage Reranking (HybRank) method, which leverages the substantial similarity measurements of upstream retrievers for passage collaboration and incorporates the lexical and semantic properties of sparse and dense retrievers for reranking. Besides, built on off-the-shelf retriever features, HybRank is a plug-in reranker capable of enhancing arbitrary passage lists including previously reranked ones. Extensive experiments demonstrate the stable improvements of performance over prevalent retrieval and reranking methods, and verify the effectiveness of the core components of HybRank.
Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.
Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.
Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.