Cross-domain sentiment classification has been a hot spot these years, which aims to learn a reliable classifier using labeled data from the source domain and evaluate it on the target domain. In this vein, most approaches utilized domain adaptation that maps data from different domains into a common feature space. To further improve the model performance, several methods targeted to mine domain-specific information were proposed. However, most of them only utilized a limited part of domain-specific information. In this study, we first develop a method of extracting domain-specific words based on the topic information. Then, we propose a Topic Driven Adaptive Network (TDAN) for cross-domain sentiment classification. The network consists of two sub-networks: semantics attention network and domain-specific word attention network, the structures of which are based on transformers. These sub-networks take different forms of input and their outputs are fused as the feature vector. Experiments validate the effectiveness of our TDAN on sentiment classification across domains.
In a dialog system, dialog act recognition and sentiment classification are two correlative tasks to capture speakers intentions, where dialog act and sentiment can indicate the explicit and the implicit intentions separately. The dialog context information (contextual information) and the mutual interaction information are two key factors that contribute to the two related tasks. Unfortunately, none of the existing approaches consider the two important sources of information simultaneously. In this paper, we propose a Co-Interactive Graph Attention Network (Co-GAT) to jointly perform the two tasks. The core module is a proposed co-interactive graph interaction layer where a cross-utterances connection and a cross-tasks connection are constructed and iteratively updated with each other, achieving to consider the two types of information simultaneously. Experimental results on two public datasets show that our model successfully captures the two sources of information and achieve the state-of-the-art performance. In addition, we find that the contributions from the contextual and mutual interaction information do not fully overlap with contextualized word representations (BERT, Roberta, XLNet).
The task of learning a sentiment classification model that adapts well to any target domain, different from the source domain, is a challenging problem. Majority of the existing approaches focus on learning a common representation by leveraging both source and target data during training. In this paper, we introduce a two-stage training procedure that leverages weakly supervised datasets for developing simple lift-and-shift-based predictive models without being exposed to the target domain during the training phase. Experimental results show that transfer with weak supervision from a source domain to various target domains provides performance very close to that obtained via supervised training on the target domain itself.
This paper proposes a way to improve the performance of existing algorithms for text classification in domains with strong language semantics. We propose a domain adaptation layer learns weights to combine a generic and a domain specific (DS) word embedding into a domain adapted (DA) embedding. The DA word embeddings are then used as inputs to a generic encoder + classifier framework to perform a downstream task such as classification. This adaptation layer is particularly suited to datasets that are modest in size, and which are, therefore, not ideal candidates for (re)training a deep neural network architecture. Results on binary and multi-class classification tasks using popular encoder architectures, including current state-of-the-art methods (with and without the shallow adaptation layer) show the effectiveness of the proposed approach.
Aspect-level sentiment classification aims to distinguish the sentiment polarities over one or more aspect terms in a sentence. Existing approaches mostly model different aspects in one sentence independently, which ignore the sentiment dependencies between different aspects. However, we find such dependency information between different aspects can bring additional valuable information. In this paper, we propose a novel aspect-level sentiment classification model based on graph convolutional networks (GCN) which can effectively capture the sentiment dependencies between multi-aspects in one sentence. Our model firstly introduces bidirectional attention mechanism with position encoding to model aspect-specific representations between each aspect and its context words, then employs GCN over the attention mechanism to capture the sentiment dependencies between different aspects in one sentence. We evaluate the proposed approach on the SemEval 2014 datasets. Experiments show that our model outperforms the state-of-the-art methods. We also conduct experiments to evaluate the effectiveness of GCN module, which indicates that the dependencies between different aspects is highly helpful in aspect-level sentiment classification.
We propose a method named Super Characters for sentiment classification. This method converts the sentiment classification problem into image classification problem by projecting texts into images and then applying CNN models for classification. Text features are extracted automatically from the generated Super Characters images, hence there is no need of any explicit step of embedding the words or characters into numerical vector representations. Experimental results on large social media corpus show that the Super Characters method consistently outperforms other methods for sentiment classification and topic classification tasks on ten large social media datasets of millions of contents in four different languages, including Chinese, Japanese, Korean and English.
Domain adaptation for sentiment analysis is challenging due to the fact that supervised classifiers are very sensitive to changes in domain. The two most prominent approaches to this problem are structural correspondence learning and autoencoders. However, they either require long training times or suffer greatly on highly divergent domains. Inspired by recent advances in cross-lingual sentiment analysis, we provide a novel perspective and cast the domain adaptation problem as an embedding projection task. Our model takes as input two mono-domain embedding spaces and learns to project them to a bi-domain space, which is jointly optimized to (1) project across domains and to (2) predict sentiment. We perform domain adaptation experiments on 20 source-target domain pairs for sentiment classification and report novel state-of-the-art results on 11 domain pairs, including the Amazon domain adaptation datasets and SemEval 2013 and 2016 datasets. Our analysis shows that our model performs comparably to state-of-the-art approaches on domains that are similar, while performing significantly better on highly divergent domains. Our code is available at //github.com/jbarnesspain/domain_blse
Most existing sentiment analysis approaches heavily rely on a large amount of labeled data that usually involve time-consuming and error-prone manual annotations. The distribution of this labeled data is significantly imbalanced among languages, e.g., more English texts are labeled than texts in other languages, which presents a major challenge to cross-lingual sentiment analysis. There have been several cross-lingual representation learning techniques that transfer the knowledge learned from a language with abundant labeled examples to another language with much fewer labels. Their performance, however, is usually limited due to the imperfect quality of machine translation and the scarce signal that bridges two languages. In this paper, we employ emojis, a ubiquitous and emotional language, as a new bridge for sentiment analysis across languages. Specifically, we propose a semi-supervised representation learning approach through the task of emoji prediction to learn cross-lingual representations of text that can capture both semantic and sentiment information. The learned representations are then utilized to facilitate cross-lingual sentiment classification. We demonstrate the effectiveness and efficiency of our approach on a representative Amazon review data set that covers three languages and three domains.
We propose a novel two-layered attention network based on Bidirectional Long Short-Term Memory for sentiment analysis. The novel two-layered attention network takes advantage of the external knowledge bases to improve the sentiment prediction. It uses the Knowledge Graph Embedding generated using the WordNet. We build our model by combining the two-layered attention network with the supervised model based on Support Vector Regression using a Multilayer Perceptron network for sentiment analysis. We evaluate our model on the benchmark dataset of SemEval 2017 Task 5. Experimental results show that the proposed model surpasses the top system of SemEval 2017 Task 5. The model performs significantly better by improving the state-of-the-art system at SemEval 2017 Task 5 by 1.7 and 3.7 points for sub-tracks 1 and 2 respectively.
Sentiment analysis is a key component in various text mining applications. Numerous sentiment classification techniques, including conventional and deep learning-based methods, have been proposed in the literature. In most existing methods, a high-quality training set is assumed to be given. Nevertheless, constructing a high-quality training set that consists of highly accurate labels is challenging in real applications. This difficulty stems from the fact that text samples usually contain complex sentiment representations, and their annotation is subjective. We address this challenge in this study by leveraging a new labeling strategy and utilizing a two-level long short-term memory network to construct a sentiment classifier. Lexical cues are useful for sentiment analysis, and they have been utilized in conventional studies. For example, polar and privative words play important roles in sentiment analysis. A new encoding strategy, that is, $\rho$-hot encoding, is proposed to alleviate the drawbacks of one-hot encoding and thus effectively incorporate useful lexical cues. We compile three Chinese data sets on the basis of our label strategy and proposed methodology. Experiments on the three data sets demonstrate that the proposed method outperforms state-of-the-art algorithms.
Sentiment Analysis (SA) is a major field of study in natural language processing, computational linguistics and information retrieval. Interest in SA has been constantly growing in both academia and industry over the recent years. Moreover, there is an increasing need for generating appropriate resources and datasets in particular for low resource languages including Persian. These datasets play an important role in designing and developing appropriate opinion mining platforms using supervised, semi-supervised or unsupervised methods. In this paper, we outline the entire process of developing a manually annotated sentiment corpus, SentiPers, which covers formal and informal written contemporary Persian. To the best of our knowledge, SentiPers is a unique sentiment corpus with such a rich annotation in three different levels including document-level, sentence-level, and entity/aspect-level for Persian. The corpus contains more than 26000 sentences of users opinions from digital product domain and benefits from special characteristics such as quantifying the positiveness or negativity of an opinion through assigning a number within a specific range to any given sentence. Furthermore, we present statistics on various components of our corpus as well as studying the inter-annotator agreement among the annotators. Finally, some of the challenges that we faced during the annotation process will be discussed as well.