亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper considers numerical discretization of a nonlocal conservation law modeling vehicular traffic flows involving nonlocal inter-vehicle interactions. The nonlocal model involves an integral over the range measured by a horizon parameter and it recovers the local Lighthill-Richards-Whitham model as the nonlocal horizon parameter goes to zero. Good numerical schemes for simulating these parameterized nonlocal traffic flow models should be robust with respect to the change of the model parameters but this has not been systematically investigated in the literature. We fill this gap through a careful study of a class of finite volume numerical schemes with suitable discretizations of the nonlocal integral, which include several schemes proposed in the literature and their variants. Our main contributions are to demonstrate the asymptotically compatibility of the schemes, which includes both the uniform convergence of the numerical solutions to the unique solution of nonlocal continuum model for a given positive horizon parameter and the convergence to the unique entropy solution of the local model as the mesh size and the nonlocal horizon parameter go to zero simultaneously. It is shown that with the asymptotically compatibility, the schemes can provide robust numerical computation under the changes of the nonlocal horizon parameter.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · UniFormer · 優化器 · Continuity · CASES ·
2023 年 3 月 1 日

In this paper we prove convergence rates for time discretisation schemes for semi-linear stochastic evolution equations with additive or multiplicative Gaussian noise, where the leading operator $A$ is the generator of a strongly continuous semigroup $S$ on a Hilbert space $X$, and the focus is on non-parabolic problems. The main results are optimal bounds for the uniform strong error $$\mathrm{E}_{k}^{\infty} := \Big(\mathbb{E} \sup_{j\in \{0, \ldots, N_k\}} \|U(t_j) - U^j\|^p\Big)^{1/p},$$ where $p \in [2,\infty)$, $U$ is the mild solution, $U^j$ is obtained from a time discretisation scheme, $k$ is the step size, and $N_k = T/k$. The usual schemes such as splitting/exponential Euler, implicit Euler, and Crank-Nicolson, etc.\ are included as special cases. Under conditions on the nonlinearity and the noise we show - $\mathrm{E}_{k}^{\infty}\lesssim k \log(T/k)$ (linear equation, additive noise, general $S$); - $\mathrm{E}_{k}^{\infty}\lesssim \sqrt{k} \log(T/k)$ (nonlinear equation, multiplicative noise, contractive $S$); - $\mathrm{E}_{k}^{\infty}\lesssim k \log(T/k)$ (nonlinear wave equation, multiplicative noise). The logarithmic factor can be removed if the splitting scheme is used with a (quasi)-contractive $S$. The obtained bounds coincide with the optimal bounds for SDEs. Most of the existing literature is concerned with bounds for the simpler pointwise strong error $$\mathrm{E}_k:=\bigg(\sup_{j\in \{0,\ldots,N_k\}}\mathbb{E} \|U(t_j) - U^{j}\|^p\bigg)^{1/p}.$$ Applications to Maxwell equations, Schr\"odinger equations, and wave equations are included. For these equations our results improve and reprove several existing results with a unified method.

We establish tightness of graph-based stochastic processes in the space $D[0+\epsilon,1-\epsilon]$ with $\epsilon >0$ that allows for discontinuities of the first kind. The graph-based stochastic processes are based on statistics constructed from similarity graphs. In this setting, the classic characterization of tightness is intractable, making it difficult to obtain convergence of the limiting distributions for graph-based stochastic processes. We take an alternative approach and study the behavior of the higher moments of the graph-based test statistics. We show that, under mild conditions of the graph, tightness of the stochastic process can be established by obtaining upper bounds on the graph-based statistics' higher moments. Explicit analytical expressions for these moments are provided. The results are applicable to generic graphs, including dense graphs where the number of edges can be of higher order than the number of observations.

For the stochastic heat equation with multiplicative noise we consider the problem of estimating the diffusivity parameter in front of the Laplace operator. Based on local observations in space, we first study an estimator that was derived for additive noise. A stable central limit theorem shows that this estimator is consistent and asymptotically mixed normal. By taking into account the quadratic variation, we propose two new estimators. Their limiting distributions exhibit a smaller (conditional) variance and the last estimator also works for vanishing noise levels. The proofs are based on local approximation results to overcome the intricate nonlinearities and on a stable central limit theorem for stochastic integrals with respect to cylindrical Brownian motion. Simulation results illustrate the theoretical findings.

Compact finite-difference (FD) schemes specify derivative approximations implicitly, thus to achieve parallelism with domain-decomposition suitable partitioning of linear systems is required. Consistent order of accuracy, dispersion, and dissipation is crucial to maintain in wave propagation problems such that deformation of the associated spectra of the discretized problems is not too severe. In this work we consider numerically tuning spectral error, at fixed formal order of accuracy to automatically devise new compact FD schemes. Grid convergence tests indicate error reduction of at least an order of magnitude over standard FD. A proposed hybrid matching-communication strategy maintains the aforementioned properties under domain-decomposition. Under evolution of linear wave-propagation problems utilizing exponential integration or explicit Runge-Kutta methods improvement is found to remain robust. A first demonstration that compact FD methods may be applied to the Z4c formulation of numerical relativity is provided where we couple our header-only, templated C++ implementation to the highly performant GR-Athena++ code. Evolving Z4c on test-bed problems shows at least an order in magnitude reduction in phase error compared to FD for propagated metric components. Stable binary-black-hole evolution utilizing compact FD together with improved convergence is also demonstrated.

This article surveys research on the application of compatible finite element methods to large scale atmosphere and ocean simulation. Compatible finite element methods extend Arakawa's C-grid finite difference scheme to the finite element world. They are constructed from a discrete de Rham complex, which is a sequence of finite element spaces which are linked by the operators of differential calculus. The use of discrete de Rham complexes to solve partial differential equations is well established, but in this article we focus on the specifics of dynamical cores for simulating weather, oceans and climate. The most important consequence of the discrete de Rham complex is the Hodge-Helmholtz decomposition, which has been used to exclude the possibility of several types of spurious oscillations from linear equations of geophysical flow. This means that compatible finite element spaces provide a useful framework for building dynamical cores. In this article we introduce the main concepts of compatible finite element spaces, and discuss their wave propagation properties. We survey some methods for discretising the transport terms that arise in dynamical core equation systems, and provide some example discretisations, briefly discussing their iterative solution. Then we focus on the recent use of compatible finite element spaces in designing structure preserving methods, surveying variational discretisations, Poisson bracket discretisations, and consistent vorticity transport.

In this paper we present an active-set method for the solution of $\ell_1$-regularized convex quadratic optimization problems. It is derived by combining a proximal method of multipliers (PMM) strategy with a standard semismooth Newton method (SSN). The resulting linear systems are solved using a Krylov-subspace method, accelerated by certain general-purpose preconditioners which are shown to be optimal with respect to the proximal parameters. Practical efficiency is further improved by warm-starting the algorithm using a proximal alternating direction method of multipliers. We show that the outer PMM achieves global convergence under mere feasibility assumptions. Under additional standard assumptions, the PMM scheme achieves global linear and local superlinear convergence. The SSN scheme is locally superlinearly convergent, assuming that its associated linear systems are solved accurately enough, and globally convergent under certain additional regularity assumptions. We provide numerical evidence to demonstrate the effectiveness of the approach by comparing it against OSQP and IP-PMM (an ADMM and a regularized IPM solver, respectively) on several elastic-net linear regression and $L^1$-regularized PDE-constrained optimization problems.

This paper provides mathematical analysis of an elementary fully discrete finite difference method applied to inhomogeneous (non-constant density and viscosity) incompressible Navier-Stokes system on a bounded domain. The proposed method consists of a version of Lax-Friedrichs explicit scheme for the transport equation and a version of Ladyzhenskaya's implicit scheme for the Navier-Stokes equations. Under the condition that the initial density profile is strictly away from $0$, the scheme is proven to be strongly convergent to a weak solution (up to a subsequence) within an arbitrary time interval, which can be seen as a proof of existence of a weak solution to the system. The results contain a new Aubin-Lions-Simon type compactness method with an interpolation inequality between strong norms of the velocity and a weak norm of the product of the density and velocity.

Consider the problem of solving systems of linear algebraic equations $Ax=b$ with a real symmetric positive definite matrix $A$ using the conjugate gradient (CG) method. To stop the algorithm at the appropriate moment, it is important to monitor the quality of the approximate solution. One of the most relevant quantities for measuring the quality of the approximate solution is the $A$-norm of the error. This quantity cannot be easily computed, however, it can be estimated. In this paper we discuss and analyze the behaviour of the Gauss-Radau upper bound on the $A$-norm of the error, based on viewing CG as a procedure for approximating a certain Riemann-Stieltjes integral. This upper bound depends on a prescribed underestimate $\mu$ to the smallest eigenvalue of $A$. We concentrate on explaining a phenomenon observed during computations showing that, in later CG iterations, the upper bound loses its accuracy, and is almost independent of $\mu$. We construct a model problem that is used to demonstrate and study the behaviour of the upper bound in dependence of $\mu$, and developed formulas that are helpful in understanding this behavior. We show that the above mentioned phenomenon is closely related to the convergence of the smallest Ritz value to the smallest eigenvalue of $A$. It occurs when the smallest Ritz value is a better approximation to the smallest eigenvalue than the prescribed underestimate $\mu$. We also suggest an adaptive strategy for improving the accuracy of the upper bounds in the previous iterations.

The Sinkhorn algorithm is the most popular method for solving the entropy minimization problem called the Schr\"odinger problem: in the non-degenerate cases, the latter admits a unique solution towards which the algorithm converges linearly. Here, motivated by recent applications of the Schr\"odinger problem with respect to structured stochastic processes (such as increasing ones), we study the Sinkhorn algorithm in degenerate cases where it might happen that no solution exist at all. We show that in this case, the algorithm ultimately alternates between two limit points. Moreover, these limit points can be used to compute the solution of a relaxed version of the Schr\"odinger problem, which appears as the $\Gamma$-limit of a problem where the marginal constraints are replaced by asymptotically large marginal penalizations, exactly in the spirit of the so-called unbalanced optimal transport. Finally, our work focuses on the support of the solution of the relaxed problem, giving its typical shape and designing a procedure to compute it quickly. We showcase promising numerical applications related to a model used in cell biology.

Diffusion models are a class of deep generative models that have shown impressive results on various tasks with dense theoretical founding. Although diffusion models have achieved impressive quality and diversity of sample synthesis than other state-of-the-art models, they still suffer from costly sampling procedure and sub-optimal likelihood estimation. Recent studies have shown great enthusiasm on improving the performance of diffusion model. In this article, we present a first comprehensive review of existing variants of the diffusion models. Specifically, we provide a first taxonomy of diffusion models and categorize them variants to three types, namely sampling-acceleration enhancement, likelihood-maximization enhancement and data-generalization enhancement. We also introduce in detail other five generative models (i.e., variational autoencoders, generative adversarial networks, normalizing flow, autoregressive models, and energy-based models), and clarify the connections between diffusion models and these generative models. Then we make a thorough investigation into the applications of diffusion models, including computer vision, natural language processing, waveform signal processing, multi-modal modeling, molecular graph generation, time series modeling, and adversarial purification. Furthermore, we propose new perspectives pertaining to the development of this generative model.

北京阿比特科技有限公司