We show that the decision problem of determining whether a given (abstract simplicial) $k$-complex has a geometric embedding in $\mathbb R^d$ is complete for the Existential Theory of the Reals for all $d\geq 3$ and $k\in\{d-1,d\}$. This implies that the problem is polynomial time equivalent to determining whether a polynomial equation system has a real solution. Moreover, this implies NP-hardness and constitutes the first hardness results for the algorithmic problem of geometric embedding (abstract simplicial) complexes.
Online routing in a planar embedded graph is central to a number of fields and has been studied extensively in the literature. For most planar graphs no $O(1)$-competitive online routing algorithm exists. A notable exception is the Delaunay triangulation for which Bose and Morin [Online routing in triangulations. SIAM Journal on Computing, 33(4):937-951, 2004] showed that there exists an online routing algorithm that is $O(1)$-competitive. However, a Delaunay triangulation can have $\Omega(n)$ vertex degree and a total weight that is a linear factor greater than the weight of a minimum spanning tree. We show a simple construction, given a set $V$ of $n$ points in the Euclidean plane, of a planar geometric graph on $V$ that has small weight (within a constant factor of the weight of a minimum spanning tree on $V$), constant degree, and that admits a local routing strategy that is $O(1)$-competitive. Moreover, the technique used to bound the weight works generally for any planar geometric graph whilst preserving the admission of an $O(1)$-competitive routing strategy.
Approximate message passing (AMP) is a promising technique for unknown signal reconstruction of certain high-dimensional linear systems with non-Gaussian signaling. A distinguished feature of the AMP-type algorithms is that their dynamics can be rigorously described by state evolution. However, state evolution does not necessarily guarantee the convergence of iterative algorithms. To solve the convergence problem of AMP-type algorithms in principle, this paper proposes a memory AMP (MAMP) under a sufficient statistic condition, named sufficient statistic MAMP (SS-MAMP). We show that the covariance matrices of SS-MAMP are L-banded and convergent. Given an arbitrary MAMP, we can construct an SS-MAMP by damping, which not only ensures the convergence of MAMP but also preserves the orthogonality of MAMP, i.e., its dynamics can be rigorously described by state evolution. As a byproduct, we prove that the Bayes-optimal orthogonal/vector AMP (BO-OAMP/VAMP) is an SS-MAMP. As a result, we reveal two interesting properties of BO-OAMP/VAMP for large systems: 1) the covariance matrices are L-banded and are convergent, and 2) damping and memory are useless (i.e., do not bring performance improvement). As an example, we construct a sufficient statistic Bayes-optimal MAMP (SS-BO-MAMP), which is Bayes optimal if its state evolution has a unique fixed point. In addition, the mean square error (MSE) of SS-BO-MAMP is not worse than the original BO-MAMP. Finally, simulations are provided to verify the validity and accuracy of the theoretical results.
The goal of regression is to recover an unknown underlying function that best links a set of predictors to an outcome from noisy observations. In nonparametric regression, one assumes that the regression function belongs to a pre-specified infinite-dimensional function space (the hypothesis space). In the online setting, when the observations come in a stream, it is computationally-preferable to iteratively update an estimate rather than refitting an entire model repeatedly. Inspired by nonparametric sieve estimation and stochastic approximation methods, we propose a sieve stochastic gradient descent estimator (Sieve-SGD) when the hypothesis space is a Sobolev ellipsoid. We show that Sieve-SGD has rate-optimal mean squared error (MSE) under a set of simple and direct conditions. The proposed estimator can be constructed with a low computational (time and space) expense: We also formally show that Sieve-SGD requires almost minimal memory usage among all statistically rate-optimal estimators.
We consider zero-sum games on infinite graphs, with objectives specified as sets of infinite words over some alphabet of colors. A well-studied class of objectives is the one of $\omega$-regular objectives, due to its relation to many natural problems in theoretical computer science. We focus on the strategy complexity question: given an objective, how much memory does each player require to play as well as possible? A classical result is that finite-memory strategies suffice for both players when the objective is $\omega$-regular. We show a reciprocal of that statement: when both players can play optimally with a chromatic finite-memory structure (i.e., whose updates can only observe colors) in all infinite game graphs, then the objective must be $\omega$-regular. This provides a game-theoretic characterization of $\omega$-regular objectives, and this characterization can help in obtaining memory bounds. Moreover, a by-product of our characterization is a new one-to-two-player lift: to show that chromatic finite-memory structures suffice to play optimally in two-player games on infinite graphs, it suffices to show it in the simpler case of one-player games on infinite graphs. We illustrate our results with the family of discounted-sum objectives, for which $\omega$-regularity depends on the value of some parameters.
We study the problem of query evaluation on probabilistic graphs, namely, tuple-independent probabilistic databases over signatures of arity two. We focus on the class of queries closed under homomorphisms, or, equivalently, the infinite unions of conjunctive queries. Our main result states that the probabilistic query evaluation problem is #P-hard for all unbounded queries from this class. As bounded queries from this class are equivalent to a union of conjunctive queries, they are already classified by the dichotomy of Dalvi and Suciu (2012). Hence, our result and theirs imply a complete data complexity dichotomy, between polynomial time and #P-hardness, on evaluating homomorphism-closed queries over probabilistic graphs. This dichotomy covers in particular all fragments of infinite unions of conjunctive queries over arity-two signatures, such as negation-free (disjunctive) Datalog, regular path queries, and a large class of ontology-mediated queries. The dichotomy also applies to a restricted case of probabilistic query evaluation called generalized model counting, where fact probabilities must be 0, 0.5, or 1. We show the main result by reducing from the problem of counting the valuations of positive partitioned 2-DNF formulae, or from the source-to-target reliability problem in an undirected graph, depending on properties of minimal models for the query.
We define and study a class of Reed-Muller type error-correcting codes obtained from elementary symmetric functions in finitely many variables. We determine the code parameters and higher weight spectra in the simplest cases.
Inverse kinematics (IK) is the problem of finding robot joint configurations that satisfy constraints on the position or pose of one or more end-effectors. For robots with redundant degrees of freedom, there is often an infinite, nonconvex set of solutions. The IK problem is further complicated when collision avoidance constraints are imposed by obstacles in the workspace. In general, closed-form expressions yielding feasible configurations do not exist, motivating the use of numerical solution methods. However, these approaches rely on local optimization of nonconvex problems, often requiring an accurate initialization or numerous re-initializations to converge to a valid solution. In this work, we first formulate inverse kinematics with complex workspace constraints as a convex feasibility problem whose low-rank feasible points provide exact IK solutions. We then present \texttt{CIDGIK} (Convex Iteration for Distance-Geometric Inverse Kinematics), an algorithm that solves this feasibility problem with a sequence of semidefinite programs whose objectives are designed to encourage low-rank minimizers. Our problem formulation elegantly unifies the configuration space and workspace constraints of a robot: intrinsic robot geometry and obstacle avoidance are both expressed as simple linear matrix equations and inequalities. Our experimental results for a variety of popular manipulator models demonstrate faster and more accurate convergence than a conventional nonlinear optimization-based approach, especially in environments with many obstacles.
Given an $n$-point metric space $(M,d)$, {\sc metric $1$-median} asks for a point $p\in M$ minimizing $\sum_{x\in M}\,d(p,x)$. We show that for each computable function $f\colon \mathbb{Z}^+\to\mathbb{Z}^+$ satisfying $f(n)=\omega(1)$, {\sc metric $1$-median} has a deterministic, $o(n)$-query, $o(f(n)\cdot\log n)$-approximation and nonadaptive algorithm. Previously, no deterministic $o(n)$-query $o(n)$-approximation algorithms are known for {\sc metric $1$-median}. On the negative side, we prove each deterministic $O(n)$-query algorithm for {\sc metric $1$-median} to be not $(\delta\log n)$-approximate for a sufficiently small constant $\delta>0$. We also refute the existence of deterministic $o(n)$-query $O(\log n)$-approximation algorithms.
In this paper, we study arbitrary infinite binary information systems each of which consists of an infinite set called universe and an infinite set of two-valued functions (attributes) defined on the universe. We consider the notion of a problem over information system which is described by a finite number of attributes and a mapping corresponding a decision to each tuple of attribute values. As algorithms for problem solving, we use deterministic and nondeterministic decision trees. As time and space complexity, we study the depth and the number of nodes in the decision trees. In the worst case, with the growth of the number of attributes in the problem description, (i) the minimum depth of deterministic decision trees grows either almost as logarithm or linearly, (ii) the minimum depth of nondeterministic decision trees either is bounded from above by a constant or grows linearly, (iii) the minimum number of nodes in deterministic decision trees has either polynomial or exponential growth, and (iv) the minimum number of nodes in nondeterministic decision trees has either polynomial or exponential growth. Based on these results, we divide the set of all infinite binary information systems into five complexity classes, and study for each class issues related to time-space trade-off for decision trees.
We present self-supervised geometric perception (SGP), the first general framework to learn a feature descriptor for correspondence matching without any ground-truth geometric model labels (e.g., camera poses, rigid transformations). Our first contribution is to formulate geometric perception as an optimization problem that jointly optimizes the feature descriptor and the geometric models given a large corpus of visual measurements (e.g., images, point clouds). Under this optimization formulation, we show that two important streams of research in vision, namely robust model fitting and deep feature learning, correspond to optimizing one block of the unknown variables while fixing the other block. This analysis naturally leads to our second contribution -- the SGP algorithm that performs alternating minimization to solve the joint optimization. SGP iteratively executes two meta-algorithms: a teacher that performs robust model fitting given learned features to generate geometric pseudo-labels, and a student that performs deep feature learning under noisy supervision of the pseudo-labels. As a third contribution, we apply SGP to two perception problems on large-scale real datasets, namely relative camera pose estimation on MegaDepth and point cloud registration on 3DMatch. We demonstrate that SGP achieves state-of-the-art performance that is on-par or superior to the supervised oracles trained using ground-truth labels.