Classification trees continue to be widely adopted in machine learning applications due to their inherently interpretable nature and scalability. We propose a rolling subtree lookahead algorithm that combines the relative scalability of the myopic approaches with the foresight of the optimal approaches in constructing trees. The limited foresight embedded in our algorithm mitigates the learning pathology observed in optimal approaches. At the heart of our algorithm lies a novel two-depth optimal binary classification tree formulation flexible to handle any loss function. We show that the feasible region of this formulation is an integral polyhedron, yielding the LP relaxation solution optimal. Through extensive computational analyses, we demonstrate that our approach outperforms optimal and myopic approaches in 808 out of 1330 problem instances, improving the out-of-sample accuracy by up to 23.6% and 14.4%, respectively.
We propose to use a simulation driven inverse inference approach to model the joint dynamics of tree branches under manipulation. Learning branch dynamics and gaining the ability to manipulate deformable vegetation can help with occlusion-prone tasks, such as fruit picking in dense foliage, as well as moving overhanging vines and branches for navigation in dense vegetation. The underlying deformable tree geometry is encapsulated as coarse spring abstractions executed on parallel, non-differentiable simulators. The implicit statistical model defined by the simulator, reference trajectories obtained by actively probing the ground truth, and the Bayesian formalism, together guide the spring parameter posterior density estimation. Our non-parametric inference algorithm, based on Stein Variational Gradient Descent, incorporates biologically motivated assumptions into the inference process as neural network driven learnt joint priors; moreover, it leverages the finite difference scheme for gradient approximations. Real and simulated experiments confirm that our model can predict deformation trajectories, quantify the estimation uncertainty, and it can perform better when base-lined against other inference algorithms, particularly from the Monte Carlo family. The model displays strong robustness properties in the presence of heteroscedastic sensor noise; furthermore, it can generalise to unseen grasp locations.
Boosting is a commonly used technique to enhance the performance of a set of base models by combining them into a strong ensemble model. Though widely adopted, boosting is typically used in supervised learning where the data is labeled accurately. However, in weakly supervised learning, where most of the data is labeled through weak and noisy sources, it remains nontrivial to design effective boosting approaches. In this work, we show that the standard implementation of the convex combination of base learners can hardly work due to the presence of noisy labels. Instead, we propose $\textit{LocalBoost}$, a novel framework for weakly-supervised boosting. LocalBoost iteratively boosts the ensemble model from two dimensions, i.e., intra-source and inter-source. The intra-source boosting introduces locality to the base learners and enables each base learner to focus on a particular feature regime by training new base learners on granularity-varying error regions. For the inter-source boosting, we leverage a conditional function to indicate the weak source where the sample is more likely to appear. To account for the weak labels, we further design an estimate-then-modify approach to compute the model weights. Experiments on seven datasets show that our method significantly outperforms vanilla boosting methods and other weakly-supervised methods.
To mitigate the bias exhibited by machine learning models, fairness criteria can be integrated into the training process to ensure fair treatment across all demographics, but it often comes at the expense of model performance. Understanding such tradeoffs, therefore, underlies the design of fair algorithms. To this end, this paper provides a complete characterization of the inherent tradeoff of demographic parity on classification problems, under the most general multi-group, multi-class, and noisy setting. Specifically, we show that the minimum error rate achievable by randomized and attribute-aware fair classifiers is given by the optimal value of a Wasserstein-barycenter problem. On the practical side, our findings lead to a simple post-processing algorithm that derives fair classifiers from score functions, which yields the optimal fair classifier when the score is Bayes optimal. We provide suboptimality analysis and sample complexity for our algorithm, and demonstrate its effectiveness on benchmark datasets.
Jamming signals can jeopardize the operation of GNSS receivers until denying its operation. Given their ubiquity, jamming mitigation and localization techniques are of crucial importance, for which jammer classification is of help. Data-driven models have been proven useful in detecting these threats, while their training using crowdsourced data still poses challenges when it comes to private data sharing. This article investigates the use of federated learning to train jamming signal classifiers locally on each device, with model updates aggregated and averaged at the central server. This allows for privacy-preserving training procedures that do not require centralized data storage or access to client local data. The used framework FedAvg is assessed on a dataset consisting of spectrogram images of simulated interfered GNSS signal. Six different jammer types are effectively classified with comparable results to a fully centralized solution that requires vast amounts of data communication and involves privacy-preserving concerns.
The performance of neural networks in content-based image retrieval (CBIR) is highly influenced by the chosen loss (objective) function. The majority of objective functions for neural models can be divided into metric learning and statistical learning. Metric learning approaches require a pair mining strategy that often lacks efficiency, while statistical learning approaches are not generating highly compact features due to their indirect feature optimization. To this end, we propose a novel repeller-attractor loss that falls in the metric learning paradigm, yet directly optimizes for the L2 metric without the need of generating pairs. Our loss is formed of three components. One leading objective ensures that the learned features are attracted to each designated learnable class anchor. The second loss component regulates the anchors and forces them to be separable by a margin, while the third objective ensures that the anchors do not collapse to zero. Furthermore, we develop a more efficient two-stage retrieval system by harnessing the learned class anchors during the first stage of the retrieval process, eliminating the need of comparing the query with every image in the database. We establish a set of four datasets (CIFAR-100, Food-101, SVHN, and Tiny ImageNet) and evaluate the proposed objective in the context of few-shot and full-set training on the CBIR task, by using both convolutional and transformer architectures. Compared to existing objective functions, our empirical evidence shows that the proposed objective is generating superior and more consistent results.
The evaluation of noisy binary classifiers on unlabeled data is treated as a streaming task: given a data sketch of the decisions by an ensemble, estimate the true prevalence of the labels as well as each classifier's accuracy on them. Two fully algebraic evaluators are constructed to do this. Both are based on the assumption that the classifiers make independent errors. The first is based on majority voting. The second, the main contribution of the paper, is guaranteed to be correct. But how do we know the classifiers are independent on any given test? This principal/agent monitoring paradox is ameliorated by exploiting the failures of the independent evaluator to return sensible estimates. A search for nearly error independent trios is empirically carried out on the \texttt{adult}, \texttt{mushroom}, and \texttt{two-norm} datasets by using the algebraic failure modes to reject evaluation ensembles as too correlated. The searches are refined by constructing a surface in evaluation space that contains the true value point. The algebra of arbitrarily correlated classifiers permits the selection of a polynomial subset free of any correlation variables. Candidate evaluation ensembles are rejected if their data sketches produce independent estimates too far from the constructed surface. The results produced by the surviving ensembles can sometimes be as good as 1\%. But handling even small amounts of correlation remains a challenge. A Taylor expansion of the estimates produced when independence is assumed but the classifiers are, in fact, slightly correlated helps clarify how the independent evaluator has algebraic `blind spots'.
We study the advantages of quantum communication models over classical communication models that are equipped with a limited number of qubits of entanglement. In this direction, we give explicit partial functions on $n$ bits for which reducing the entanglement increases the classical communication complexity exponentially. Our separations are as follows. For every $k\ge 1$: $Q\|^*$ versus $R2^*$: We show that quantum simultaneous protocols with $\tilde{\Theta}(k^5 \log^3 n)$ qubits of entanglement can exponentially outperform two-way randomized protocols with $O(k)$ qubits of entanglement. This resolves an open problem from [Gav08] and improves the state-of-the-art separations between quantum simultaneous protocols with entanglement and two-way randomized protocols without entanglement [Gav19, GRT22]. $R\|^*$ versus $Q\|^*$: We show that classical simultaneous protocols with $\tilde{\Theta}(k \log n)$ qubits of entanglement can exponentially outperform quantum simultaneous protocols with $O(k)$ qubits of entanglement, resolving an open question from [GKRW06, Gav19]. The best result prior to our work was a relational separation against protocols without entanglement [GKRW06]. $R\|^*$ versus $R1^*$: We show that classical simultaneous protocols with $\tilde{\Theta}(k\log n)$ qubits of entanglement can exponentially outperform randomized one-way protocols with $O(k)$ qubits of entanglement. Prior to our work, only a relational separation was known [Gav08].
Few-shot image classification aims to classify unseen classes with limited labeled samples. Recent works benefit from the meta-learning process with episodic tasks and can fast adapt to class from training to testing. Due to the limited number of samples for each task, the initial embedding network for meta learning becomes an essential component and can largely affects the performance in practice. To this end, many pre-trained methods have been proposed, and most of them are trained in supervised way with limited transfer ability for unseen classes. In this paper, we proposed to train a more generalized embedding network with self-supervised learning (SSL) which can provide slow and robust representation for downstream tasks by learning from the data itself. We evaluate our work by extensive comparisons with previous baseline methods on two few-shot classification datasets ({\em i.e.,} MiniImageNet and CUB). Based on the evaluation results, the proposed method achieves significantly better performance, i.e., improve 1-shot and 5-shot tasks by nearly \textbf{3\%} and \textbf{4\%} on MiniImageNet, by nearly \textbf{9\%} and \textbf{3\%} on CUB. Moreover, the proposed method can gain the improvement of (\textbf{15\%}, \textbf{13\%}) on MiniImageNet and (\textbf{15\%}, \textbf{8\%}) on CUB by pretraining using more unlabeled data. Our code will be available at \hyperref[//github.com/phecy/SSL-FEW-SHOT.]{//github.com/phecy/ssl-few-shot.}
Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.
Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.