亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The present cross-disciplinary research explores pedestrian-autonomous vehicle interactions in a safe, virtual environment. We first present contemporary tools in the field and then propose the design and development of a new application that facilitates pedestrian point of view research. We conduct a three-step user experience experiment where participants answer questions before and after using the application in various scenarios. Behavioral results in virtuality, especially when there were consequences, tend to simulate real life sufficiently well to make design choices, and we received valuable insights into human/vehicle interaction. Our tool seemed to start raising participant awareness of autonomous vehicles and their capabilities and limitations, which is an important step in overcoming public distrust of AVs. Further, studying how users respect or take advantage of AVs may help inform future operating mode indicator design as well as algorithm biases that might support socially-optimal AV operation.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 約束 · Networking · 學成 · 泛函 ·
2021 年 11 月 23 日

In most optimization problems, users have a clear understanding of the function to optimize (e.g., minimize the makespan for scheduling problems). However, the constraints may be difficult to state and their modelling often requires expertise in Constraint Programming. Active constraint acquisition has been successfully used to support non-experienced users in learning constraint networks through the generation of a sequence of queries. In this paper, we propose Learn&Optimize, a method to solve optimization problems with known objective function and unknown constraint network. It uses an active constraint acquisition algorithm which learns the unknown constraints and computes boundaries for the optimal solution during the learning process. As a result, our method allows users to solve optimization problems without learning the overall constraint network.

The Controller Area Network (CAN) is the most common protocol interconnecting the various control units of modern cars. Its vulnerabilities are somewhat known but we argue they are not yet fully explored -- although the protocol is obviously not secure by design, it remains to be thoroughly assessed how and to what extent it can be maliciously exploited. This manuscript describes the early steps towards a larger goal, that of integrating the various CAN pentesting activities together and carry them out holistically within an established pentesting environment such as the Metasploit Framework. In particular, we shall see how to build an exploit that upsets a simulated tachymeter running on a minimal Linux machine. While both portions are freely available from the authors' Github shares, the exploit is currently subject to a Metasploit pull request.

The Internet of Things (IoT) comprises of a heterogeneous mix of smart devices which vary widely in their size, usage, energy capacity, computational power etc. IoT devices are typically connected to the Cloud via Fog nodes for fast processing and response times. In a rush to deploy devices quickly into the real-world and to maximize market share, the issue of security is often considered as an afterthought by the manufacturers of such devices. Some well-known security concerns of IoT are - data confidentiality, authentication of devices, location privacy, device integrity etc. We believe that the majority of security schemes proposed to date are too heavyweight for them to be of any practical value for the IoT. In this paper we propose a lightweight encryption scheme loosely based on the classic one-time pad, and make use of hash functions for the generation and management of keys. Our scheme imposes minimal computational and storage requirements on the network nodes, which makes it a viable candidate for the encryption of data transmitted by IoT devices in the Fog.

Given the tremendous success of the Internet of Things in interconnecting consumer devices, we observe a natural trend to likewise interconnect devices in industrial settings, referred to as Industrial Internet of Things or Industry 4.0. While this coupling of industrial components provides many benefits, it also introduces serious security challenges. Although sharing many similarities with the consumer Internet of Things, securing the Industrial Internet of Things introduces its own challenges but also opportunities, mainly resulting from a longer lifetime of components and a larger scale of networks. In this paper, we identify the unique security goals and challenges of the Industrial Internet of Things, which, unlike consumer deployments, mainly follow from safety and productivity requirements. To address these security goals and challenges, we provide a comprehensive survey of research efforts to secure the Industrial Internet of Things, discuss their applicability, and analyze their security benefits.

The increase in popularity of connected features in intelligent transportation systems, has led to a greater risk of cyber-attacks and subsequently, requires a more robust validation of cybersecurity in vehicle design. This article explores three such cyber-attacks and the weaknesses in the connected networks. A review is carried out on current vulnerabilities and key considerations for future vehicle design and validation are highlighted. This article addresses the vehicle manufactures desire to add unnecessary remote connections without appropriate security analysis and assessment of the risks involved. The modern vehicle is All Connected and only as strong as its weakest link.

We provide an ice friction model for vehicle dynamics of a two-man bobsled which can be used for driver evaluation and in a driver-in-the-loop simulator. Longitudinal friction is modeled by combining experimental results with finite element simulations to yield a correlation between contact pressure and friction. To model lateral friction, we collect data from 44 bobsleigh runs using special sensors. Non-linear regression is used to fit a bob-specific one-track vehicle dynamics model to the data. It is applied in driving simulation and enables a novel method for bob driver evaluation. Bob drivers with various levels of experience are investigated. It shows that a similar performance of the top drivers results from different driving styles.

We focus on the problem of planning the motion of a robot in a dynamic multiagent environment such as a pedestrian scene. Enabling the robot to navigate safely and in a socially compliant fashion in such scenes requires a representation that accounts for the unfolding multiagent dynamics. Existing approaches to this problem tend to employ microscopic models of motion prediction that reason about the individual behavior of other agents. While such models may achieve high tracking accuracy in trajectory prediction benchmarks, they often lack an understanding of the group structures unfolding in crowded scenes. Inspired by the Gestalt theory from psychology, we build a Model Predictive Control framework (G-MPC) that leverages group-based prediction for robot motion planning. We conduct an extensive simulation study involving a series of challenging navigation tasks in scenes extracted from two real-world pedestrian datasets. We illustrate that G-MPC enables a robot to achieve statistically significantly higher safety and lower number of group intrusions than a series of baselines featuring individual pedestrian motion prediction models. Finally, we show that G-MPC can handle noisy lidar-scan estimates without significant performance losses.

Applications can tailor a network slice by specifying a variety of QoS attributes related to application-specific performance, function or operation. However, some QoS attributes like guaranteed bandwidth required by the application do vary over time. For example, network bandwidth needs of video streams from surveillance cameras can vary a lot depending on the environmental conditions and the content in the video streams. In this paper, we propose a novel, dynamic QoS attribute prediction technique that assists any application to make optimal resource reservation requests at all times. Standard forecasting using traditional cost functions like MAE, MSE, RMSE, MDA, etc. don't work well because they do not take into account the direction (whether the forecasting of resources is more or less than needed), magnitude (by how much the forecast deviates, and in which direction), or frequency (how many times the forecast deviates from actual needs, and in which direction). The direction, magnitude and frequency have a direct impact on the application's accuracy of insights, and the operational costs. We propose a new, parameterized cost function that takes into account all three of them, and guides the design of a new prediction technique. To the best of our knowledge, this is the first work that considers time-varying application requirements and dynamically adjusts slice QoS requests to 5G networks in order to ensure a balance between application's accuracy and operational costs. In a real-world deployment of a surveillance video analytics application over 17 cameras, we show that our technique outperforms other traditional forecasting methods, and it saves 34% of network bandwidth (over a ~24 hour period) when compared to a static, one-time reservation.

Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems. For instance, in autonomous driving, we would like the driving system to issue an alert and hand over the control to humans when it detects unusual scenes or objects that it has never seen before and cannot make a safe decision. This problem first emerged in 2017 and since then has received increasing attention from the research community, leading to a plethora of methods developed, ranging from classification-based to density-based to distance-based ones. Meanwhile, several other problems are closely related to OOD detection in terms of motivation and methodology. These include anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). Despite having different definitions and problem settings, these problems often confuse readers and practitioners, and as a result, some existing studies misuse terms. In this survey, we first present a generic framework called generalized OOD detection, which encompasses the five aforementioned problems, i.e., AD, ND, OSR, OOD detection, and OD. Under our framework, these five problems can be seen as special cases or sub-tasks, and are easier to distinguish. Then, we conduct a thorough review of each of the five areas by summarizing their recent technical developments. We conclude this survey with open challenges and potential research directions.

Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's fingertip. While today's MRS considerably help users to find interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user--item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. The purpose of this trends and survey article is twofold. We first identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the field. The article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the field.

北京阿比特科技有限公司