The proliferation of online misinformation has posed significant threats to public interest. While numerous online users actively participate in the combat against misinformation, many of such responses can be characterized by the lack of politeness and supporting facts. As a solution, text generation approaches are proposed to automatically produce counter-misinformation responses. Nevertheless, existing methods are often trained end-to-end without leveraging external knowledge, resulting in subpar text quality and excessively repetitive responses. In this paper, we propose retrieval augmented response generation for online misinformation (RARG), which collects supporting evidence from scientific sources and generates counter-misinformation responses based on the evidences. In particular, our RARG consists of two stages: (1) evidence collection, where we design a retrieval pipeline to retrieve and rerank evidence documents using a database comprising over 1M academic articles; (2) response generation, in which we align large language models (LLMs) to generate evidence-based responses via reinforcement learning from human feedback (RLHF). We propose a reward function to maximize the utilization of the retrieved evidence while maintaining the quality of the generated text, which yields polite and factual responses that clearly refutes misinformation. To demonstrate the effectiveness of our method, we study the case of COVID-19 and perform extensive experiments with both in- and cross-domain datasets, where RARG consistently outperforms baselines by generating high-quality counter-misinformation responses.
Mutual information between two random variables is a well-studied notion, whose understanding is fairly complete. Mutual information between one random variable and a pair of other random variables, however, is a far more involved notion. Specifically, Shannon's mutual information does not capture fine-grained interactions between those three variables, resulting in limited insights in complex systems. To capture these fine-grained interactions, in 2010 Williams and Beer proposed to decompose this mutual information to information atoms, called unique, redundant, and synergistic, and proposed several operational axioms that these atoms must satisfy. In spite of numerous efforts, a general formula which satisfies these axioms has yet to be found. Inspired by Judea Pearl's do-calculus, we resolve this open problem by introducing the do-operation, an operation over the variable system which sets a certain marginal to a desired value, which is distinct from any existing approaches. Using this operation, we provide the first explicit formula for calculating the information atoms so that Williams and Beer's axioms are satisfied, as well as additional properties from subsequent studies in the field.
Affine frequency division multiplexing (AFDM) and orthogonal AFDM access (O-AFDMA) are promising techniques based on chirp signals, which are able to suppress the performance deterioration caused by Doppler shifts in high-mobility scenarios. However, the high peak-to-average power ratio (PAPR) in AFDM or O-AFDMA is still a crucial problem, which severely limits their practical applications. In this paper, we propose a discrete affine Fourier transform (DAFT)-spread AFDMA scheme based on the properties of the AFDM systems, named DAFT-s-AFDMA to significantly reduce the PAPR by resorting to the DAFT. We formulate the transmitted time-domain signals of the proposed DAFT-s-AFDMA schemes with localized and interleaved chirp subcarrier allocation strategies. Accordingly, we derive the guidelines for setting the DAFT parameters, revealing the insights of PAPR reduction. Finally, simulation results of PAPR comparison in terms of the complementary cumulative distribution function (CCDF) show that the proposed DAFT-s-AFDMA schemes with localized and interleaved strategies can both attain better PAPR performances than the conventional O-AFDMA scheme.
Modeling open hole failure of composites is a complex task, consisting in a highly nonlinear response with interacting failure modes. Numerical modeling of this phenomenon has traditionally been based on the finite element method, but requires to tradeoff between high fidelity and computational cost. To mitigate this shortcoming, recent work has leveraged machine learning to predict the strength of open hole composite specimens. Here, we also propose using data-based models but to tackle open hole composite failure from a classification point of view. More specifically, we show how to train surrogate models to learn the ultimate failure envelope of an open hole composite plate under in-plane loading. To achieve this, we solve the classification problem via support vector machine (SVM) and test different classifiers by changing the SVM kernel function. The flexibility of kernel-based SVM also allows us to integrate the recently developed quantum kernels in our algorithm and compare them with the standard radial basis function (RBF) kernel. Finally, thanks to kernel-target alignment optimization, we tune the free parameters of all kernels to best separate safe and failure-inducing loading states. The results show classification accuracies higher than 90% for RBF, especially after alignment, followed closely by the quantum kernel classifiers.
Efficiently allocating treatments with a budget constraint constitutes an important challenge across various domains. In marketing, for example, the use of promotions to target potential customers and boost conversions is limited by the available budget. While much research focuses on estimating causal effects, there is relatively limited work on learning to allocate treatments while considering the operational context. Existing methods for uplift modeling or causal inference primarily estimate treatment effects, without considering how this relates to a profit maximizing allocation policy that respects budget constraints. The potential downside of using these methods is that the resulting predictive model is not aligned with the operational context. Therefore, prediction errors are propagated to the optimization of the budget allocation problem, subsequently leading to a suboptimal allocation policy. We propose an alternative approach based on learning to rank. Our proposed methodology directly learns an allocation policy by prioritizing instances in terms of their incremental profit. We propose an efficient sampling procedure for the optimization of the ranking model to scale our methodology to large-scale data sets. Theoretically, we show how learning to rank can maximize the area under a policy's incremental profit curve. Empirically, we validate our methodology and show its effectiveness in practice through a series of experiments on both synthetic and real-world data.
The landscape of information retrieval has broadened from search services to a critical component in various advanced applications, where indexing efficiency, cost-effectiveness, and freshness are increasingly important yet remain less explored. To address these demands, we introduce Semi-parametric Vocabulary Disentangled Retrieval (SVDR). SVDR is a novel semi-parametric retrieval framework that supports two types of indexes: an embedding-based index for high effectiveness, akin to existing neural retrieval methods; and a binary token index that allows for quick and cost-effective setup, resembling traditional term-based retrieval. In our evaluation on three open-domain question answering benchmarks with the entire Wikipedia as the retrieval corpus, SVDR consistently demonstrates superiority. It achieves a 3% higher top-1 retrieval accuracy compared to the dense retriever DPR when using an embedding-based index and an 9% higher top-1 accuracy compared to BM25 when using a binary token index. Specifically, the adoption of a binary token index reduces index preparation time from 30 GPU hours to just 2 CPU hours and storage size from 31 GB to 2 GB, achieving a 90% reduction compared to an embedding-based index.
Benchmarking is crucial for evaluating a DBMS, yet existing benchmarks often fail to reflect the varied nature of user workloads. As a result, there is increasing momentum toward creating databases that incorporate real-world user data to more accurately mirror business environments. However, privacy concerns deter users from directly sharing their data, underscoring the importance of creating synthesized databases for benchmarking that also prioritize privacy protection. Differential privacy has become a key method for safeguarding privacy when sharing data, but the focus has largely been on minimizing errors in aggregate queries or classification tasks, with less attention given to benchmarking factors like runtime performance. This paper delves into the creation of privacy-preserving databases specifically for benchmarking, aiming to produce a differentially private database whose query performance closely resembles that of the original data. Introducing PrivBench, an innovative synthesis framework, we support the generation of high-quality data that maintains privacy. PrivBench uses sum-product networks (SPNs) to partition and sample data, enhancing data representation while securing privacy. The framework allows users to adjust the detail of SPN partitions and privacy settings, crucial for customizing privacy levels. We validate our approach, which uses the Laplace and exponential mechanisms, in maintaining privacy. Our tests show that PrivBench effectively generates data that maintains privacy and excels in query performance, consistently reducing errors in query execution time, query cardinality, and KL divergence.
Neural networks are often overconfident about their predictions, which undermines their reliability and trustworthiness. In this work, we present a novel technique, named Error-Driven Uncertainty Aware Training (EUAT), which aims to enhance the ability of neural models to estimate their uncertainty correctly, namely to be highly uncertain when they output inaccurate predictions and low uncertain when their output is accurate. The EUAT approach operates during the model's training phase by selectively employing two loss functions depending on whether the training examples are correctly or incorrectly predicted by the model. This allows for pursuing the twofold goal of i) minimizing model uncertainty for correctly predicted inputs and ii) maximizing uncertainty for mispredicted inputs, while preserving the model's misprediction rate. We evaluate EUAT using diverse neural models and datasets in the image recognition domains considering both non-adversarial and adversarial settings. The results show that EUAT outperforms existing approaches for uncertainty estimation (including other uncertainty-aware training techniques, calibration, ensembles, and DEUP) by providing uncertainty estimates that not only have higher quality when evaluated via statistical metrics (e.g., correlation with residuals) but also when employed to build binary classifiers that decide whether the model's output can be trusted or not and under distributional data shifts.
External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.
External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.
Policy gradient methods are often applied to reinforcement learning in continuous multiagent games. These methods perform local search in the joint-action space, and as we show, they are susceptable to a game-theoretic pathology known as relative overgeneralization. To resolve this issue, we propose Multiagent Soft Q-learning, which can be seen as the analogue of applying Q-learning to continuous controls. We compare our method to MADDPG, a state-of-the-art approach, and show that our method achieves better coordination in multiagent cooperative tasks, converging to better local optima in the joint action space.