The topology-aware Massively Parallel Computation (MPC) model is proposed and studied recently, which enhances the classical MPC model by the awareness of network topology. The work of Hu et al. on topology-aware MPC model considers only the tree topology. In this paper a more general case is considered, where the underlying network is a weighted complete graph. We then call this model as Weighted Massively Parallel Computation (WMPC) model, and study the problem of minimizing communication cost under it. Two communication cost minimization problems are defined based on different pattern of communication, which are the Data Redistribution Problem and Data Allocation Problem. We also define four kinds of objective functions for communication cost, which consider the total cost, bottleneck cost, maximum of send and receive cost, and summation of send and receive cost, respectively. Combining the two problems in different communication pattern with the four kinds of objective cost functions, 8 problems are obtained. The hardness results of the 8 problems make up the content of this paper. With rigorous proof, we prove that some of the 8 problems are in P, some FPT, some NP-complete, and some W[1]-complete.
Collaborative filtering (CF) is a pivotal technique in modern recommender systems. The learning process of CF models typically consists of three components: interaction encoder, loss function, and negative sampling. Although many existing studies have proposed various CF models to design sophisticated interaction encoders, recent work shows that simply reformulating the loss functions can achieve significant performance gains. This paper delves into analyzing the relationship among existing loss functions. Our mathematical analysis reveals that the previous loss functions can be interpreted as alignment and uniformity functions: (i) the alignment matches user and item representations, and (ii) the uniformity disperses user and item distributions. Inspired by this analysis, we propose a novel loss function that improves the design of alignment and uniformity considering the unique patterns of datasets called Margin-aware Alignment and Weighted Uniformity (MAWU). The key novelty of MAWU is two-fold: (i) margin-aware alignment (MA) mitigates user/item-specific popularity biases, and (ii) weighted uniformity (WU) adjusts the significance between user and item uniformities to reflect the inherent characteristics of datasets. Extensive experimental results show that MF and LightGCN equipped with MAWU are comparable or superior to state-of-the-art CF models with various loss functions on three public datasets.
The Skolem problem is a long-standing open problem in linear dynamical systems: can a linear recurrence sequence (LRS) ever reach 0 from a given initial configuration? Similarly, the positivity problem asks whether the LRS stays positive from an initial configuration. Deciding Skolem (or positivity) has been open for half a century: the best known decidability results are for LRS with special properties (e.g., low order recurrences). But these problems are easier for "uninitialized" variants, where the initial configuration is not fixed but can vary arbitrarily: checking if there is an initial configuration from which the LRS stays positive can be decided in polynomial time (Tiwari in 2004, Braverman in 2006). In this paper, we consider problems that lie between the initialized and uninitialized variant. More precisely, we ask if 0 (resp. negative numbers) can be avoided from every initial configuration in a neighborhood of a given initial configuration. This can be considered as a robust variant of the Skolem (resp. positivity) problem. We show that these problems lie at the frontier of decidability: if the neighbourhood is given as part of the input, then robust Skolem and robust positivity are Diophantine hard, i.e., solving either would entail major breakthrough in Diophantine approximations, as happens for (non-robust) positivity. However, if one asks whether such a neighbourhood exists, then the problems turn out to be decidable with PSPACE complexity. Our techniques also allow us to tackle robustness for ultimate positivity, which asks whether there is a bound on the number of steps after which the LRS remains positive. There are two variants depending on whether we ask for a "uniform" bound on this number of steps. For the non-uniform variant, when the neighbourhood is open, the problem turns out to be tractable, even when the neighbourhood is given as input.
Foundation models, such as OpenAI's GPT-3 and GPT-4, Meta's LLaMA, and Google's PaLM2, have revolutionized the field of artificial intelligence. A notable paradigm shift has been the advent of the Segment Anything Model (SAM), which has exhibited a remarkable capability to segment real-world objects, trained on 1 billion masks and 11 million images. Although SAM excels in general object segmentation, it lacks the intrinsic ability to detect salient objects, resulting in suboptimal performance in this domain. To address this challenge, we present the Segment Salient Object Model (SSOM), an innovative approach that adaptively fine-tunes SAM for salient object detection by harnessing the low-rank structure inherent in deep learning. Comprehensive qualitative and quantitative evaluations across five challenging RGB benchmark datasets demonstrate the superior performance of our approach, surpassing state-of-the-art methods.
We study a generalization of the classic Spanning Tree problem that allows for a non-uniform failure model. More precisely, edges are either \emph{safe} or \emph{unsafe} and we assume that failures only affect unsafe edges. In Unweighted Flexible Graph Connectivity we are given an undirected graph $G = (V,E)$ in which the edge set $E$ is partitioned into a set $S$ of safe edges and a set $U$ of unsafe edges and the task is to find a set $T$ of at most $k$ edges such that $T - \{u\}$ is connected and spans $V$ for any unsafe edge $u \in T$. Unweighted Flexible Graph Connectivity generalizes both Spanning Tree and Hamiltonian Cycle. We study Unweighted Flexible Graph Connectivity in terms of fixed-parameter tractability (FPT). We show an almost complete dichotomy on which parameters lead to fixed-parameter tractability and which lead to hardness. To this end, we obtain FPT-time algorithms with respect to the vertex deletion distance to cluster graphs and with respect to the treewidth. By exploiting the close relationship to Hamiltonian Cycle, we show that FPT-time algorithms for many smaller parameters are unlikely under standard parameterized complexity assumptions. Regarding problem-specific parameters, we observe that Unweighted Flexible Graph Connectivity} admits an FPT-time algorithm when parameterized by the number of unsafe edges. Furthermore, we investigate a below-upper-bound parameter for the number of edges of a solution. We show that this parameter also leads to an FPT-time algorithm.
Air interface is a fundamental component within any wireless communication system. In Release 18, the 3rd Generation Partnership Project (3GPP) delves into the possibilities of leveraging artificial intelligence (AI)/machine learning (ML) to improve the performance of the fifth-generation (5G) New Radio (NR) air interface. This endeavor marks a pioneering stride within 3GPP's journey in shaping wireless communication standards. This article offers a comprehensive overview of the pivotal themes explored by 3GPP in this domain. Encompassing a general framework for AI/ML and specific use cases such as channel state information feedback, beam management, and positioning, it provides a holistic perspective. Moreover, we highlight the potential trajectory of AI/ML for the NR air interface in 3GPP Release 19, a pathway that paves the journey towards the sixth generation (6G) wireless communication systems that will feature integrated AI and communication as a key usage scenario.
The design of personalized cranial implants is a challenging and tremendous task that has become a hot topic in terms of process automation with the use of deep learning techniques. The main challenge is associated with the high diversity of possible cranial defects. The lack of appropriate data sources negatively influences the data-driven nature of deep learning algorithms. Hence, one of the possible solutions to overcome this problem is to rely on synthetic data. In this work, we propose three volumetric variations of deep generative models to augment the dataset by generating synthetic skulls, i.e. Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP), WGAN-GP hybrid with Variational Autoencoder pretraining (VAE/WGAN-GP) and Introspective Variational Autoencoder (IntroVAE). We show that it is possible to generate dozens of thousands of defective skulls with compatible defects that achieve a trade-off between defect heterogeneity and the realistic shape of the skull. We evaluate obtained synthetic data quantitatively by defect segmentation with the use of V-Net and qualitatively by their latent space exploration. We show that the synthetically generated skulls highly improve the segmentation process compared to using only the original unaugmented data. The generated skulls may improve the automatic design of personalized cranial implants for real medical cases.
The joint replenishment problem (JRP) is a classical inventory management problem. We consider a natural generalization with outliers, where we are allowed to reject (that is, not service) a subset of demand points. In this paper, we are motivated by issues of fairness - if we do not serve all of the demands, we wish to ``spread out the pain'' in a balanced way among customers, communities, or any specified market segmentation. One approach is to constrain the rejections allowed, and to have separate bounds for each given customer. In our most general setting, we consider a set of C features, where each demand point has an associated rejection cost for each feature, and we have a given bound on the allowed rejection cost incurred in total for each feature. This generalizes a model of fairness introduced in earlier work on the Colorful k-Center problem in which (analogously) each demand point has a given color, and we bound the number of rejections of each color class. We give the first constant approximation algorithms for the fairness-constrained JRP with a constant number of features; specifically, we give a 2.86-approximation algorithm in this case. Even for the special case in which we bound the total (weighted) number of outliers, this performance guarantee improves upon bounds previously known for this case. Our approach is an LP-based algorithm that splits the instance into two subinstances. One is solved by a novel iterative rounding approach and the other by pipage-based rounding. The standard LP relaxation has an unbounded integrality gap, and hence another key element of our algorithm is to strengthen the relaxation by correctly guessing key attributes of the optimal solution, which are sufficiently concise, so that we can enumerate over all possible guesses in polynomial time - albeit exponential in C, the number of features.
A significant number of machine learning models are vulnerable to model extraction attacks, which focus on stealing the models by using specially curated queries against the target model. This task is well accomplished by using part of the training data or a surrogate dataset to train a new model that mimics a target model in a white-box environment. In pragmatic situations, however, the target models are trained on private datasets that are inaccessible to the adversary. The data-free model extraction technique replaces this problem when it comes to using queries artificially curated by a generator similar to that used in Generative Adversarial Nets. We propose for the first time, to the best of our knowledge, an adversary black box attack extending to a regression problem for predicting bounding box coordinates in object detection. As part of our study, we found that defining a loss function and using a novel generator setup is one of the key aspects in extracting the target model. We find that the proposed model extraction method achieves significant results by using reasonable queries. The discovery of this object detection vulnerability will support future prospects for securing such models.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.