Binscatter is a popular method for visualizing bivariate relationships and conducting informal specification testing. We study the properties of this method formally and develop enhanced visualization and econometric binscatter tools. These include estimating conditional means with optimal binning and quantifying uncertainty. We also highlight a methodological problem related to covariate adjustment that can yield incorrect conclusions. We revisit two applications using our methodology and find substantially different results relative to those obtained using prior informal binscatter methods. General purpose software in Python, R, and Stata is provided. Our technical work is of independent interest for the nonparametric partition-based estimation literature.
Density estimation, a central problem in machine learning, can be performed using Normalizing Flows (NFs). NFs comprise a sequence of invertible transformations, that turn a complex target distribution into a simple one, by exploiting the change of variables theorem. Neural Autoregressive Flows (NAFs) and Block Neural Autoregressive Flows (B-NAFs) are arguably the most perfomant members of the NF family. However, they suffer scalability issues and training instability due to the constraints imposed on the network structure. In this paper, we propose a novel solution to these challenges by exploiting transformers to define a new class of neural flows called Transformer Neural Autoregressive Flows (T-NAFs). T-NAFs treat each dimension of a random variable as a separate input token, using attention masking to enforce an autoregressive constraint. We take an amortization-inspired approach where the transformer outputs the parameters of an invertible transformation. The experimental results demonstrate that T-NAFs consistently match or outperform NAFs and B-NAFs across multiple datasets from the UCI benchmark. Remarkably, T-NAFs achieve these results using an order of magnitude fewer parameters than previous approaches, without composing multiple flows.
In extremely large-scale multiple input multiple output (XL-MIMO) systems for future sixth-generation (6G) communications, codebook-based beam training stands out as a promising technology to acquire channel state information (CSI). Despite their effectiveness, when the pilot overhead is limited, existing beam training methods suffer from significant achievable rate degradation for remote users with low signal-to-noise ratio (SNR). To tackle this challenge, leverging the error-correcting capability of channel codes, we introduce channel coding theory into hierarchical beam training to extend the coverage area. Specifically, we establish the duality between hierarchical beam training and channel coding, and the proposed coded beam training scheme serves as a general framework. Then, we present two specific implementations exemplified by coded beam training methods based on Hamming codes and convolutional codes, during which the beam encoding and decoding processes are refined respectively to better accommodate to the beam training problem. Simulation results have demonstrated that, the proposed coded beam training method can enable reliable beam training performance for remote users with low SNR, while keeping training overhead low.
We propose a novel approach to soundly combining linear types with effect handlers. Linear type systems statically ensure that resources such as file handles are used exactly once. Effect handlers provide a modular programming abstraction for implementing features ranging from exceptions to concurrency. Whereas linear type systems bake in the assumption that continuations are invoked exactly once, effect handlers allow continuations to be discarded or invoked more than once. This mismatch leads to soundness bugs in existing systems such as the programming language Links, which combines linearity (for session types) with effect handlers. We introduce control flow linearity as a means to ensure that continuations are used in accordance with the linearity of any resources they capture, ruling out such soundness bugs. We formalise control flow linearity in a System F-style core calculus Feffpop equipped with linear types, effect types, and effect handlers. We define a linearity-aware semantics to formally prove that Feffpop preserves the integrity of linear values in the sense that no linear value is discarded or duplicated. In order to show that control flow linearity can be made practical, we adapt Links based on the design of Feffpop, in doing so fixing a long-standing soundness bug. Finally, to better expose the potential of control flow linearity, we define an ML-style core calculus Qeffpop, based on qualified types, which requires no programmer provided annotations, and instead relies entirely on type inference to infer control flow linearity. Both linearity and effects are captured by qualified types. Qeffpop overcomes a number of practical limitations of Feffpop, supporting abstraction over linearity, linearity dependencies between type variables, and a much more fine-grained notion of control flow linearity.
The visual feature pyramid has proven its effectiveness and efficiency in target detection tasks. Yet, current methodologies tend to overly emphasize inter-layer feature interaction, neglecting the crucial aspect of intra-layer feature adjustment. Experience underscores the significant advantages of intra-layer feature interaction in enhancing target detection tasks. While some approaches endeavor to learn condensed intra-layer feature representations using attention mechanisms or visual transformers, they overlook the incorporation of global information interaction. This oversight results in increased false detections and missed targets.To address this critical issue, this paper introduces the Global Feature Pyramid Network (GFPNet), an augmented version of PAFPN that integrates global information for enhanced target detection. Specifically, we leverage a lightweight MLP to capture global feature information, utilize the VNC encoder to process these features, and employ a parallel learnable mechanism to extract intra-layer features from the input image. Building on this foundation, we retain the PAFPN method to facilitate inter-layer feature interaction, extracting rich feature details across various levels.Compared to conventional feature pyramids, GFPN not only effectively focuses on inter-layer feature information but also captures global feature details, fostering intra-layer feature interaction and generating a more comprehensive and impactful feature representation. GFPN consistently demonstrates performance improvements over object detection baselines.
Disentangled Representation Learning (DRL) aims to learn a model capable of identifying and disentangling the underlying factors hidden in the observable data in representation form. The process of separating underlying factors of variation into variables with semantic meaning benefits in learning explainable representations of data, which imitates the meaningful understanding process of humans when observing an object or relation. As a general learning strategy, DRL has demonstrated its power in improving the model explainability, controlability, robustness, as well as generalization capacity in a wide range of scenarios such as computer vision, natural language processing, data mining etc. In this article, we comprehensively review DRL from various aspects including motivations, definitions, methodologies, evaluations, applications and model designs. We discuss works on DRL based on two well-recognized definitions, i.e., Intuitive Definition and Group Theory Definition. We further categorize the methodologies for DRL into four groups, i.e., Traditional Statistical Approaches, Variational Auto-encoder Based Approaches, Generative Adversarial Networks Based Approaches, Hierarchical Approaches and Other Approaches. We also analyze principles to design different DRL models that may benefit different tasks in practical applications. Finally, we point out challenges in DRL as well as potential research directions deserving future investigations. We believe this work may provide insights for promoting the DRL research in the community.
Geometric deep learning (GDL), which is based on neural network architectures that incorporate and process symmetry information, has emerged as a recent paradigm in artificial intelligence. GDL bears particular promise in molecular modeling applications, in which various molecular representations with different symmetry properties and levels of abstraction exist. This review provides a structured and harmonized overview of molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction, and quantum chemistry. Emphasis is placed on the relevance of the learned molecular features and their complementarity to well-established molecular descriptors. This review provides an overview of current challenges and opportunities, and presents a forecast of the future of GDL for molecular sciences.
The information bottleneck (IB) method is a technique for extracting information that is relevant for predicting the target random variable from the source random variable, which is typically implemented by optimizing the IB Lagrangian that balances the compression and prediction terms. However, the IB Lagrangian is hard to optimize, and multiple trials for tuning values of Lagrangian multiplier are required. Moreover, we show that the prediction performance strictly decreases as the compression gets stronger during optimizing the IB Lagrangian. In this paper, we implement the IB method from the perspective of supervised disentangling. Specifically, we introduce Disentangled Information Bottleneck (DisenIB) that is consistent on compressing source maximally without target prediction performance loss (maximum compression). Theoretical and experimental results demonstrate that our method is consistent on maximum compression, and performs well in terms of generalization, robustness to adversarial attack, out-of-distribution detection, and supervised disentangling.
Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.
Graph neural networks (GNNs) have been widely used in representation learning on graphs and achieved state-of-the-art performance in tasks such as node classification and link prediction. However, most existing GNNs are designed to learn node representations on the fixed and homogeneous graphs. The limitations especially become problematic when learning representations on a misspecified graph or a heterogeneous graph that consists of various types of nodes and edges. In this paper, we propose Graph Transformer Networks (GTNs) that are capable of generating new graph structures, which involve identifying useful connections between unconnected nodes on the original graph, while learning effective node representation on the new graphs in an end-to-end fashion. Graph Transformer layer, a core layer of GTNs, learns a soft selection of edge types and composite relations for generating useful multi-hop connections so-called meta-paths. Our experiments show that GTNs learn new graph structures, based on data and tasks without domain knowledge, and yield powerful node representation via convolution on the new graphs. Without domain-specific graph preprocessing, GTNs achieved the best performance in all three benchmark node classification tasks against the state-of-the-art methods that require pre-defined meta-paths from domain knowledge.
Attention networks in multimodal learning provide an efficient way to utilize given visual information selectively. However, the computational cost to learn attention distributions for every pair of multimodal input channels is prohibitively expensive. To solve this problem, co-attention builds two separate attention distributions for each modality neglecting the interaction between multimodal inputs. In this paper, we propose bilinear attention networks (BAN) that find bilinear attention distributions to utilize given vision-language information seamlessly. BAN considers bilinear interactions among two groups of input channels, while low-rank bilinear pooling extracts the joint representations for each pair of channels. Furthermore, we propose a variant of multimodal residual networks to exploit eight-attention maps of the BAN efficiently. We quantitatively and qualitatively evaluate our model on visual question answering (VQA 2.0) and Flickr30k Entities datasets, showing that BAN significantly outperforms previous methods and achieves new state-of-the-arts on both datasets.