Deep learning technology has made great achievements in the field of image. In order to defend against malware attacks, researchers have proposed many Windows malware detection models based on deep learning. However, deep learning models are vulnerable to adversarial example attacks. Malware can generate adversarial malware with the same malicious function to attack the malware detection model and evade detection of the model. Currently, many adversarial defense studies have been proposed, but existing adversarial defense studies are based on image sample and cannot be directly applied to malware sample. Therefore, this paper proposes an adversarial malware defense method based on adversarial training. This method uses preprocessing to defend simple adversarial examples to reduce the difficulty of adversarial training. Moreover, this method improves the adversarial defense capability of the model through adversarial training. We experimented with three attack methods in two sets of datasets, and the results show that the method in this paper can improve the adversarial defense capability of the model without reducing the accuracy of the model.
Molecular property prediction with deep learning has gained much attention over the past years. Owing to the scarcity of labeled molecules, there has been growing interest in self-supervised learning methods that learn generalizable molecular representations from unlabeled data. Molecules are typically treated as 2D topological graphs in modeling, but it has been discovered that their 3D geometry is of great importance in determining molecular functionalities. In this paper, we propose the Geometry-aware line graph transformer (Galformer) pre-training, a novel self-supervised learning framework that aims to enhance molecular representation learning with 2D and 3D modalities. Specifically, we first design a dual-modality line graph transformer backbone to encode the topological and geometric information of a molecule. The designed backbone incorporates effective structural encodings to capture graph structures from both modalities. Then we devise two complementary pre-training tasks at the inter and intra-modality levels. These tasks provide properly supervised information and extract discriminative 2D and 3D knowledge from unlabeled molecules. Finally, we evaluate Galformer against six state-of-the-art baselines on twelve property prediction benchmarks via downstream fine-tuning. Experimental results show that Galformer consistently outperforms all baselines on both classification and regression tasks, demonstrating its effectiveness.
Testing the significance of a variable or group of variables $X$ for predicting a response $Y$, given additional covariates $Z$, is a ubiquitous task in statistics. A simple but common approach is to specify a linear model, and then test whether the regression coefficient for $X$ is non-zero. However, when the model is misspecified, the test may have poor power, for example when $X$ is involved in complex interactions, or lead to many false rejections. In this work we study the problem of testing the model-free null of conditional mean independence, i.e. that the conditional mean of $Y$ given $X$ and $Z$ does not depend on $X$. We propose a simple and general framework that can leverage flexible nonparametric or machine learning methods, such as additive models or random forests, to yield both robust error control and high power. The procedure involves using these methods to perform regressions, first to estimate a form of projection of $Y$ on $X$ and $Z$ using one half of the data, and then to estimate the expected conditional covariance between this projection and $Y$ on the remaining half of the data. While the approach is general, we show that a version of our procedure using spline regression achieves what we show is the minimax optimal rate in this nonparametric testing problem. Numerical experiments demonstrate the effectiveness of our approach both in terms of maintaining Type I error control, and power, compared to several existing approaches.
Graph Neural Networks (GNNs) are becoming increasingly popular due to their superior performance in critical graph-related tasks. While quantization is widely used to accelerate GNN computation, quantized training faces unprecedented challenges. Current quantized GNN training systems often have longer training times than their full-precision counterparts for two reasons: (i) addressing the accuracy challenge leads to excessive overhead, and (ii) the optimization potential exposed by quantization is not adequately leveraged. This paper introduces Tango which re-thinks quantization challenges and opportunities for graph neural network training on GPUs with three contributions: Firstly, we introduce efficient rules to maintain accuracy during quantized GNN training. Secondly, we design and implement quantization-aware primitives and inter-primitive optimizations that can speed up GNN training. Finally, we integrate Tango with the popular Deep Graph Library (DGL) system and demonstrate its superior performance over state-of-the-art approaches on various GNN models and datasets.
Learning personalization has proven its effectiveness in enhancing learner performance. Therefore, modern digital learning platforms have been increasingly depending on recommendation systems to offer learners personalized suggestions of learning materials. Learners can utilize those recommendations to acquire certain skills for the labor market or for their formal education. Personalization can be based on several factors, such as personal preference, social connections or learning context. In an educational environment, the learning context plays an important role in generating sound recommendations, which not only fulfill the preferences of the learner, but also correspond to the pedagogical goals of the learning process. This is because a learning context describes the actual situation of the learner at the moment of requesting a learning recommendation. It provides information about the learner current state of knowledge, goal orientation, motivation, needs, available time, and other factors that reflect their status and may influence how learning recommendations are perceived and utilized. Context aware recommender systems have the potential to reflect the logic that a learning expert may follow in recommending materials to students with respect to their status and needs. In this paper, we review the state-of-the-art approaches for defining a user learning-context. We provide an overview of the definitions available, as well as the different factors that are considered when defining a context. Moreover, we further investigate the links between those factors and their pedagogical foundations in learning theories. We aim to provide a comprehensive understanding of contextualized learning from both pedagogical and technical points of view. By combining those two viewpoints, we aim to bridge a gap between both domains, in terms of contextualizing learning recommendations.
Explaining artificial intelligence (AI) predictions is increasingly important and even imperative in many high-stakes applications where humans are the ultimate decision-makers. In this work, we propose two novel architectures of self-interpretable image classifiers that first explain, and then predict (as opposed to post-hoc explanations) by harnessing the visual correspondences between a query image and exemplars. Our models consistently improve (by 1 to 4 points) on out-of-distribution (OOD) datasets while performing marginally worse (by 1 to 2 points) on in-distribution tests than ResNet-50 and a $k$-nearest neighbor classifier (kNN). Via a large-scale, human study on ImageNet and CUB, our correspondence-based explanations are found to be more useful to users than kNN explanations. Our explanations help users more accurately reject AI's wrong decisions than all other tested methods. Interestingly, for the first time, we show that it is possible to achieve complementary human-AI team accuracy (i.e., that is higher than either AI-alone or human-alone), in ImageNet and CUB image classification tasks.
This study explores student responses to allegations of cheating using ChatGPT, a popular software platform that can be used to generate grammatical and broadly correct text on virtually any topic. Forty-nine posts and the ensuing discussions were collected from Reddit, an online discussion forum, in which students shared their experiences of being accused (the majority falsely) and discussed how to navigate their situations. A thematic analysis was conducted with this material, and five themes were discerned: a legalistic stance, involving argument strategy and evidence gathering; the societal role of higher education as a high-stakes gatekeeper; the vicissitudes of trust in students vs. technology; questions of what constitutes cheating; and the need to rethink assessment. The findings from this study will help instructors and institutions to create more meaningful assessments in the age of AI and develop guidelines for student use of ChatGPT and other AI tools.
Incorporating prior knowledge into pre-trained language models has proven to be effective for knowledge-driven NLP tasks, such as entity typing and relation extraction. Current pre-training procedures usually inject external knowledge into models by using knowledge masking, knowledge fusion and knowledge replacement. However, factual information contained in the input sentences have not been fully mined, and the external knowledge for injecting have not been strictly checked. As a result, the context information cannot be fully exploited and extra noise will be introduced or the amount of knowledge injected is limited. To address these issues, we propose MLRIP, which modifies the knowledge masking strategies proposed by ERNIE-Baidu, and introduce a two-stage entity replacement strategy. Extensive experiments with comprehensive analyses illustrate the superiority of MLRIP over BERT-based models in military knowledge-driven NLP tasks.
In the past few years, the emergence of pre-training models has brought uni-modal fields such as computer vision (CV) and natural language processing (NLP) to a new era. Substantial works have shown they are beneficial for downstream uni-modal tasks and avoid training a new model from scratch. So can such pre-trained models be applied to multi-modal tasks? Researchers have explored this problem and made significant progress. This paper surveys recent advances and new frontiers in vision-language pre-training (VLP), including image-text and video-text pre-training. To give readers a better overall grasp of VLP, we first review its recent advances from five aspects: feature extraction, model architecture, pre-training objectives, pre-training datasets, and downstream tasks. Then, we summarize the specific VLP models in detail. Finally, we discuss the new frontiers in VLP. To the best of our knowledge, this is the first survey on VLP. We hope that this survey can shed light on future research in the VLP field.
We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.
Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.