Error correcting codes~(ECCs) are indispensable for reliable transmission in communication systems. The recent advancements in deep learning have catalyzed the exploration of ECC decoders based on neural networks. Among these, transformer-based neural decoders have achieved state-of-the-art decoding performance. In this paper, we propose a novel Cross-attention Message-Passing Transformer~(CrossMPT). CrossMPT iteratively updates two types of input vectors (i.e., magnitude and syndrome vectors) using two masked cross-attention blocks. The mask matrices in these cross-attention blocks are determined by the code's parity-check matrix that delineates the relationship between magnitude and syndrome vectors. Our experimental results show that CrossMPT significantly outperforms existing neural network-based decoders, particularly in decoding low-density parity-check codes. Notably, CrossMPT also achieves a significant reduction in computational complexity, achieving over a 50\% decrease in its attention layers compared to the original transformer-based decoder, while retaining the computational complexity of the remaining layers.
Simultaneous Machine Translation (SiMT) generates target translations while reading the source sentence. It relies on a policy to determine the optimal timing for reading sentences and generating translations. Existing SiMT methods generally adopt the traditional Transformer architecture, which concurrently determines the policy and generates translations. While they excel at determining policies, their translation performance is suboptimal. Conversely, Large Language Models (LLMs), trained on extensive corpora, possess superior generation capabilities, but it is difficult for them to acquire translation policy through the training methods of SiMT. Therefore, we introduce Agent-SiMT, a framework combining the strengths of LLMs and traditional SiMT methods. Agent-SiMT contains the policy-decision agent and the translation agent. The policy-decision agent is managed by a SiMT model, which determines the translation policy using partial source sentence and translation. The translation agent, leveraging an LLM, generates translation based on the partial source sentence. The two agents collaborate to accomplish SiMT. Experiments demonstrate that Agent-SiMT attains state-of-the-art performance.
We introduce a self-supervised pretraining method, called OccFeat, for camera-only Bird's-Eye-View (BEV) segmentation networks. With OccFeat, we pretrain a BEV network via occupancy prediction and feature distillation tasks. Occupancy prediction provides a 3D geometric understanding of the scene to the model. However, the geometry learned is class-agnostic. Hence, we add semantic information to the model in the 3D space through distillation from a self-supervised pretrained image foundation model. Models pretrained with our method exhibit improved BEV semantic segmentation performance, particularly in low-data scenarios. Moreover, empirical results affirm the efficacy of integrating feature distillation with 3D occupancy prediction in our pretraining approach. Repository: //github.com/valeoai/Occfeat
Motion-based controllable text-to-video generation involves motions to control the video generation. Previous methods typically require the training of models to encode motion cues or the fine-tuning of video diffusion models. However, these approaches often result in suboptimal motion generation when applied outside the trained domain. In this work, we propose MotionClone, a training-free framework that enables motion cloning from a reference video to control text-to-video generation. We employ temporal attention in video inversion to represent the motions in the reference video and introduce primary temporal-attention guidance to mitigate the influence of noisy or very subtle motions within the attention weights. Furthermore, to assist the generation model in synthesizing reasonable spatial relationships and enhance its prompt-following capability, we propose a location-aware semantic guidance mechanism that leverages the coarse location of the foreground from the reference video and original classifier-free guidance features to guide the video generation. Extensive experiments demonstrate that MotionClone exhibits proficiency in both global camera motion and local object motion, with notable superiority in terms of motion fidelity, textual alignment, and temporal consistency.
Multilingual proficiency presents a significant challenge for large language models (LLMs). English-centric models are usually suboptimal in other languages, particularly those that are linguistically distant from English. This performance discrepancy mainly stems from the imbalanced distribution of training data across languages during pre-training and instruction tuning stages. To address this problem, we propose a novel approach called CrossIn, which utilizes a mixed composition of cross-lingual instruction tuning data. Our method leverages the compressed representation shared by various languages to efficiently enhance the model's task-solving capabilities and multilingual proficiency within a single process. In addition, we introduce a multi-task and multi-faceted benchmark to evaluate the effectiveness of CrossIn. Experimental results demonstrate that our method substantially improves performance across tasks and languages, and we provide extensive insights into the impact of cross-lingual data volume and the integration of translation data on enhancing multilingual consistency and accuracy.
In recent years, instruction fine-tuning (IFT) on large language models (LLMs) has garnered considerable attention to enhance model performance on unseen tasks. Attempts have been made on automatic construction and effective selection for IFT data. However, we posit that previous methods have not fully harnessed the potential of LLMs for enhancing data quality. The responses within IFT data could be further enhanced by leveraging the capabilities of LLMs themselves. In this paper, we propose CoEvol, an LLM-based multi-agent cooperation framework for the improvement of responses to instructions. To effectively refine the responses, we develop an iterative framework following a debate-advise-edit-judge paradigm. A two-stage multi-agent debate strategy is further devised to ensure the diversity and reliability of editing suggestions within the framework. Empirically, models equipped with CoEvol outperform competitive baselines evaluated by MT-Bench and AlpacaEval, demonstrating its effectiveness in enhancing instruction-following capabilities for LLMs.
We present MaskLID, a simple, yet effective, code-switching (CS) language identification (LID) method. MaskLID does not require any training and is designed to complement current high-performance sentence-level LIDs. Sentence-level LIDs are classifiers trained on monolingual texts to provide single labels, typically using a softmax layer to turn scores into probabilities. However, in cases where a sentence is composed in both L1 and L2 languages, the LID classifier often only returns the dominant label L1. To address this limitation, MaskLID employs a strategy to mask text features associated with L1, allowing the LID to classify the text as L2 in the next round. This method uses the LID itself to identify the features that require masking and does not rely on any external resource. In this work, we explore the use of MaskLID for two open-source LIDs (GlotLID and OpenLID), that are both based on the FastText architecture. Code and demo are available at //github.com/cisnlp/MaskLID.
The development of multi-modal object detection for Unmanned Aerial Vehicles (UAVs) typically relies on a large amount of pixel-aligned multi-modal image data. However, existing datasets face challenges such as limited modalities, high construction costs, and imprecise annotations. To this end, we propose a synthetic multi-modal UAV-based object detection dataset, UEMM-Air. Specially, we simulate various UAV flight scenarios and object types using the Unreal Engine (UE). Then we design the UAV's flight logic to automatically collect data from different scenarios, perspectives, and altitudes. Finally, we propose a novel heuristic automatic annotation algorithm to generate accurate object detection labels. In total, our UEMM-Air consists of 20k pairs of images with 5 modalities and precise annotations. Moreover, we conduct numerous experiments and establish new benchmark results on our dataset. We found that models pre-trained on UEMM-Air exhibit better performance on downstream tasks compared to other similar datasets. The dataset is publicly available (//github.com/1e12Leon/UEMM-Air) to support the research of multi-modal UAV object detection models.
Large Language Models (LLMs) have strong capabilities in code comprehension, but fine-tuning costs and semantic alignment issues limit their project-specific optimization; conversely, code models such CodeBERT are easy to fine-tune, but it is often difficult to learn vulnerability semantics from complex code languages. To address these challenges, this paper introduces the Multi-Model Collaborative Vulnerability Detection approach (M2CVD) that leverages the strong capability of analyzing vulnerability semantics from LLMs to improve the detection accuracy of code models. M2CVD employs a novel collaborative process: first enhancing the quality of vulnerability semantic description produced by LLMs through the understanding of project code by code models, and then using these improved vulnerability semantic description to boost the detection accuracy of code models. We demonstrated M2CVD's effectiveness on two real-world datasets, where M2CVD significantly outperformed the baseline. In addition, we demonstrate that the M2CVD collaborative method can extend to other different LLMs and code models to improve their accuracy in vulnerability detection tasks.
Transformer-based models have emerged as powerful tools for multivariate time series forecasting (MTSF). However, existing Transformer models often fall short of capturing both intricate dependencies across variate and temporal dimensions in MTS data. Some recent models are proposed to separately capture variate and temporal dependencies through either two sequential or parallel attention mechanisms. However, these methods cannot directly and explicitly learn the intricate inter-series and intra-series dependencies. In this work, we first demonstrate that these dependencies are very important as they usually exist in real-world data. To directly model these dependencies, we propose a transformer-based model UniTST containing a unified attention mechanism on the flattened patch tokens. Additionally, we add a dispatcher module which reduces the complexity and makes the model feasible for a potentially large number of variates. Although our proposed model employs a simple architecture, it offers compelling performance as shown in our extensive experiments on several datasets for time series forecasting.
Transformer models are increasingly used for solving Partial Differential Equations (PDEs). Several adaptations have been proposed, all of which suffer from the typical problems of Transformers, such as quadratic memory and time complexity. Furthermore, all prevalent architectures for PDE solving lack at least one of several desirable properties of an ideal surrogate model, such as (i) generalization to PDE parameters not seen during training, (ii) spatial and temporal zero-shot super-resolution, (iii) continuous temporal extrapolation, (iv) support for 1D, 2D, and 3D PDEs, and (v) efficient inference for longer temporal rollouts. To address these limitations, we propose Vectorized Conditional Neural Fields (VCNeFs), which represent the solution of time-dependent PDEs as neural fields. Contrary to prior methods, however, VCNeFs compute, for a set of multiple spatio-temporal query points, their solutions in parallel and model their dependencies through attention mechanisms. Moreover, VCNeF can condition the neural field on both the initial conditions and the parameters of the PDEs. An extensive set of experiments demonstrates that VCNeFs are competitive with and often outperform existing ML-based surrogate models.