亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce an $hp$-version discontinuous Galerkin finite element method (DGFEM) for the linear Boltzmann transport problem. A key feature of this new method is that, while offering arbitrary order convergence rates, it may be implemented in an almost identical form to standard multigroup discrete ordinates methods, meaning that solutions can be computed efficiently with high accuracy and in parallel within existing software. This method provides a unified discretisation of the space, angle, and energy domains of the underlying integro-differential equation and naturally incorporates both local mesh and local polynomial degree variation within each of these computational domains. Moreover, general polytopic elements can be handled by the method, enabling efficient discretisations of problems posed on complicated spatial geometries. We study the stability and $hp$-version a priori error analysis of the proposed method, by deriving suitable $hp$-approximation estimates together with a novel inf-sup bound. Numerical experiments highlighting the performance of the method for both polyenergetic and monoenergetic problems are presented.

相關內容

Tensors, also known as multidimensional arrays, are useful data structures in machine learning and statistics. In recent years, Bayesian methods have emerged as a popular direction for analyzing tensor-valued data since they provide a convenient way to introduce sparsity into the model and conduct uncertainty quantification. In this article, we provide an overview of frequentist and Bayesian methods for solving tensor completion and regression problems, with a focus on Bayesian methods. We review common Bayesian tensor approaches including model formulation, prior assignment, posterior computation, and theoretical properties. We also discuss potential future directions in this field.

Persistent homology, a technique from computational topology, has recently shown strong empirical performance in the context of graph classification. Being able to capture long range graph properties via higher-order topological features, such as cycles of arbitrary length, in combination with multi-scale topological descriptors, has improved predictive performance for data sets with prominent topological structures, such as molecules. At the same time, the theoretical properties of persistent homology have not been formally assessed in this context. This paper intends to bridge the gap between computational topology and graph machine learning by providing a brief introduction to persistent homology in the context of graphs, as well as a theoretical discussion and empirical analysis of its expressivity for graph learning tasks.

In this article we develop a high order accurate method to solve the incompressible boundary layer equations in a provably stable manner.~We first derive continuous energy estimates,~and then proceed to the discrete setting.~We formulate the discrete approximation using high-order finite difference methods on summation-by-parts form and implement the boundary conditions weakly using the simultaneous approximation term method.~By applying the discrete energy method and imitating the continuous analysis,~the discrete estimate that resembles the continuous counterpart is obtained proving stability.~We also show that these newly derived boundary conditions removes the singularities associated with the null-space of the nonlinear discrete spatial operator.~Numerical experiments that verifies the high-order accuracy of the scheme and coincides with the theoretical results are presented.~The numerical results are compared with the well-known Blasius similarity solution as well as that resulting from the solution of the incompressible Navier Stokes equations.

Tensor parameters that are amortized or regularized over large tensor powers, often called "asymptotic" tensor parameters, play a central role in several areas including algebraic complexity theory (constructing fast matrix multiplication algorithms), quantum information (entanglement cost and distillable entanglement), and additive combinatorics (bounds on cap sets, sunflower-free sets, etc.). Examples are the asymptotic tensor rank, asymptotic slice rank and asymptotic subrank. Recent works (Costa-Dalai, Blatter-Draisma-Rupniewski, Christandl-Gesmundo-Zuiddam) have investigated notions of discreteness (no accumulation points) or "gaps" in the values of such tensor parameters. We prove a general discreteness theorem for asymptotic tensor parameters of order-three tensors and use this to prove that (1) over any finite field, the asymptotic subrank and the asymptotic slice rank have no accumulation points, and (2) over the complex numbers, the asymptotic slice rank has no accumulation points. Central to our approach are two new general lower bounds on the asymptotic subrank of tensors, which measures how much a tensor can be diagonalized. The first lower bound says that the asymptotic subrank of any concise three-tensor is at least the cube-root of the smallest dimension. The second lower bound says that any three-tensor that is "narrow enough" (has one dimension much smaller than the other two) has maximal asymptotic subrank. Our proofs rely on new lower bounds on the maximum rank in matrix subspaces that are obtained by slicing a three-tensor in the three different directions. We prove that for any concise tensor the product of any two such maximum ranks must be large, and as a consequence there are always two distinct directions with large max-rank.

Wasserstein gradient flows of maximum mean discrepancy (MMD) functionals with non-smooth Riesz kernels show a rich structure as singular measures can become absolutely continuous ones and conversely. In this paper we contribute to the understanding of such flows. We propose to approximate the backward scheme of Jordan, Kinderlehrer and Otto for computing such Wasserstein gradient flows as well as a forward scheme for so-called Wasserstein steepest descent flows by neural networks (NNs). Since we cannot restrict ourselves to absolutely continuous measures, we have to deal with transport plans and velocity plans instead of usual transport maps and velocity fields. Indeed, we approximate the disintegration of both plans by generative NNs which are learned with respect to appropriate loss functions. In order to evaluate the quality of both neural schemes, we benchmark them on the interaction energy. Here we provide analytic formulas for Wasserstein schemes starting at a Dirac measure and show their convergence as the time step size tends to zero. Finally, we illustrate our neural MMD flows by numerical examples.

This work is concerned with the analysis of a space-time finite element discontinuous Galerkin method on polytopal meshes (XT-PolydG) for the numerical discretization of wave propagation in coupled poroelastic-elastic media. The mathematical model consists of the low-frequency Biot's equations in the poroelastic medium and the elastodynamics equation for the elastic one. To realize the coupling, suitable transmission conditions on the interface between the two domains are (weakly) embedded in the formulation. The proposed PolydG discretization in space is then coupled with a dG time integration scheme, resulting in a full space-time dG discretization. We present the stability analysis for both the continuous and the semidiscrete formulations, and we derive error estimates for the semidiscrete formulation in a suitable energy norm. The method is applied to a wide set of numerical test cases to verify the theoretical bounds. Examples of physical interest are also presented to investigate the capability of the proposed method in relevant geophysical scenarios.

As a computational alternative to Markov chain Monte Carlo approaches, variational inference (VI) is becoming more and more popular for approximating intractable posterior distributions in large-scale Bayesian models due to its comparable efficacy and superior efficiency. Several recent works provide theoretical justifications of VI by proving its statistical optimality for parameter estimation under various settings; meanwhile, formal analysis on the algorithmic convergence aspects of VI is still largely lacking. In this paper, we consider the common coordinate ascent variational inference (CAVI) algorithm for implementing the mean-field (MF) VI towards optimizing a Kullback--Leibler divergence objective functional over the space of all factorized distributions. Focusing on the two-block case, we analyze the convergence of CAVI by leveraging the extensive toolbox from functional analysis and optimization. We provide general conditions for certifying global or local exponential convergence of CAVI. Specifically, a new notion of generalized correlation for characterizing the interaction between the constituting blocks in influencing the VI objective functional is introduced, which according to the theory, quantifies the algorithmic contraction rate of two-block CAVI. As illustrations, we apply the developed theory to a number of examples, and derive explicit problem-dependent upper bounds on the algorithmic contraction rate.

The accurate prediction of aerodynamic drag on satellites orbiting in the upper atmosphere is critical to the operational success of modern space technologies, such as satellite-based communication or navigation systems, which have become increasingly popular in the last few years due to the deployment of constellations of satellites in low-Earth orbit. As a result, physics-based models of the ionosphere and thermosphere have emerged as a necessary tool for the prediction of atmospheric outputs under highly variable space weather conditions. This paper proposes a high-fidelity approach for physics-based space weather modeling based on the solution of the Navier-Stokes equations using a high-order discontinuous Galerkin method, combined with a matrix-free strategy suitable for high-performance computing on GPU architectures. The approach consists of a thermospheric model that describes a chemically frozen neutral atmosphere in non-hydrostatic equilibrium driven by the external excitation of the Sun. A novel set of variables is considered to treat the low densities present in the upper atmosphere and to accommodate the wide range of scales present in the problem. At the same time, and unlike most existing approaches, radial and angular directions are treated in a non-segregated approach. The study presents a set of numerical examples that demonstrate the accuracy of the approximation and validate the current approach against observational data along a satellite orbit, including estimates of established empirical and physics-based models of the ionosphere-thermosphere system. Finally, a 1D radial derivation of the physics-based model is presented and utilized for conducting a parametric study of the main thermal quantities under various solar conditions.

In this work, we propose a novel strategy for the numerical solution of linear convection diffusion equation (CDE) over unfitted domains. In the proposed numerical scheme, strategies from high order Hybridized Discontinuous Galerkin method and eXtended Finite Element method is combined with the level set definition of the boundaries. The proposed scheme and hence, is named as eXtended Hybridizable Discontinuous Galerkin (XHDG) method. In this regard, the Hybridizable Discontinuous Galerkin (HDG) method is eXtended to the unfitted domains; i.e, the computational mesh does not need to fit to the domain boundary; instead, the boundary is defined by a level set function and cuts through the background mesh arbitrarily. The original unknown structure of HDG and its hybrid nature ensuring the local conservation of fluxes is kept, while developing a modified bilinear form for the elements cut by the boundary. At every cut element, an auxiliary nodal trace variable on the boundary is introduced, which is eliminated afterwards while imposing the boundary conditions. Both stationary and time dependent CDEs are studied over a range of flow regimes from diffusion to convection dominated; using high order $(p \leq 4)$ XHDG through benchmark numerical examples over arbitrary unfitted domains. Results proved that XHDG inherits optimal $(p + 1)$ and super $(p + 2)$ convergence properties of HDG while removing the fitting mesh restriction.

Recommender system is one of the most important information services on today's Internet. Recently, graph neural networks have become the new state-of-the-art approach of recommender systems. In this survey, we conduct a comprehensive review of the literature in graph neural network-based recommender systems. We first introduce the background and the history of the development of both recommender systems and graph neural networks. For recommender systems, in general, there are four aspects for categorizing existing works: stage, scenario, objective, and application. For graph neural networks, the existing methods consist of two categories, spectral models and spatial ones. We then discuss the motivation of applying graph neural networks into recommender systems, mainly consisting of the high-order connectivity, the structural property of data, and the enhanced supervision signal. We then systematically analyze the challenges in graph construction, embedding propagation/aggregation, model optimization, and computation efficiency. Afterward and primarily, we provide a comprehensive overview of a multitude of existing works of graph neural network-based recommender systems, following the taxonomy above. Finally, we raise discussions on the open problems and promising future directions of this area. We summarize the representative papers along with their codes repositories in //github.com/tsinghua-fib-lab/GNN-Recommender-Systems.

北京阿比特科技有限公司