亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Successful performance in Formula One is determined by combination of both the driver's skill and race-car constructor advantage. This makes key performance questions in the sport difficult to answer. For example, who is the best Formula One driver, which is the best constructor, and what is their relative contribution to success? In this paper, we answer these questions based on data from the hybrid era in Formula One (2014 - 2021 seasons). We present a novel Bayesian multilevel rank-ordered logit regression method to model individual race finishing positions. We show that our modelling approach describes our data well, which allows for precise inferences about driver skill and constructor advantage. We conclude that Hamilton and Verstappen are the best drivers in the hybrid era, the top-three teams (Mercedes, Ferrari, and Red Bull) clearly outperform other constructors, and approximately 88% of the variance in race results is explained by the constructor. We argue that this modelling approach may prove useful for sports beyond Formula One, as it creates performance ratings for independent components contributing to success.

相關內容

In medical, social, and behavioral research we often encounter datasets with a multilevel structure and multiple correlated dependent variables. These data are frequently collected from a study population that distinguishes several subpopulations with different (i.e., heterogeneous) effects of an intervention. Despite the frequent occurrence of such data, methods to analyze them are less common and researchers often resort to either ignoring the multilevel and/or heterogeneous structure, analyzing only a single dependent variable, or a combination of these. These analysis strategies are suboptimal: Ignoring multilevel structures inflates Type I error rates, while neglecting the multivariate or heterogeneous structure masks detailed insights. To analyze such data comprehensively, the current paper presents a novel Bayesian multilevel multivariate logistic regression model. The clustered structure of multilevel data is taken into account, such that posterior inferences can be made with accurate error rates. Further, the model shares information between different subpopulations in the estimation of average and conditional average multivariate treatment effects. To facilitate interpretation, multivariate logistic regression parameters are transformed to posterior success probabilities and differences between them. A numerical evaluation compared our framework to less comprehensive alternatives and highlighted the need to model the multilevel structure: Treatment comparisons based on the multilevel model had targeted Type I error rates, while single-level alternatives resulted in inflated Type I errors. Further, the multilevel model was more powerful than a single-level model when the number of clusters was higher. ...

We present a full space-time numerical solution of the advection-diffusion equation using a continuous Galerkin finite element method. The Galerkin/least-square method is employed to ensure stability of the discrete variational problem. In the full space-time formulation, time is considered another dimension, and the time derivative is interpreted as an additional advection term of the field variable. We derive a priori error estimates and illustrate spatio-temporal convergence with several numerical examples. We also derive a posteriori error estimates, which coupled with adaptive space-time mesh refinement provide efficient and accurate solutions. The accuracy of the space-time solutions is illustrated against analytical solutions as well as against numerical solutions using a conventional time-marching algorithm.

Understanding superfluidity remains a major goal of condensed matter physics. Here we tackle this challenge utilizing the recently developed Fermionic neural network (FermiNet) wave function Ansatz for variational Monte Carlo calculations. We study the unitary Fermi gas, a system with strong, short-range, two-body interactions known to possess a superfluid ground state but difficult to describe quantitatively. We demonstrate key limitations of the FermiNet Ansatz in studying the unitary Fermi gas and propose a simple modification that outperforms the original FermiNet significantly, giving highly accurate results. We prove mathematically that the new Ansatz, which only differs from the original Ansatz by the method of antisymmetrization, is a strict generalization of the original FermiNet architecture, despite the use of fewer parameters. Our approach shares several advantages with the FermiNet: the use of a neural network removes the need for an underlying basis set; and the flexibility of the network yields extremely accurate results within a variational quantum Monte Carlo framework that provides access to unbiased estimates of arbitrary ground-state expectation values. We discuss how the method can be extended to study other superfluids.

Difference-in-differences (DiD) is a popular method to evaluate treatment effects of real-world policy interventions. Several approaches have previously developed under alternative identifying assumptions in settings where pre- and post-treatment outcome measurements are available. However, these approaches suffer from several limitations, either (i) they only apply to continuous outcomes and the average treatment effect on the treated, or (ii) they depend on the scale of outcome, or (iii) they assume the absence of unmeasured confounding given pre-treatment covariate and outcome measurements, or (iv) they lack semiparametric efficiency theory. In this paper, we develop a new framework for causal identification and inference in DiD settings that satisfies (i)-(iv), making it universally applicable, unlike existing DiD methods. Key to our framework is an odds ratio equi-confounding (OREC) assumption, which states that the generalized odds ratio relating treatment and treatment-free potential outcome is stable across pre- and post-treatment periods. Under the OREC assumption, we establish nonparametric identification for any potential treatment effect on the treated in view, which in principle would be identifiable under the stronger assumption of no unmeasured confounding. Moreover, we develop a consistent, asymptotically linear, and semiparametric efficient estimator of treatment effects on the treated by leveraging recent learning theory. We illustrate our framework with extensive simulation studies and two well-established real-world applications in labor economics and traffic safety evaluation.

In this work, geometry optimization of mechanical truss using computer-aided finite element analysis is presented. The shape of the truss is a dominant factor in determining the capacity of load it can bear. At a given parameter space, our goal is to find the parameters of a hull that maximize the load-bearing capacity and also don't yield to the induced stress. We rely on finite element analysis, which is a computationally costly design analysis tool for design evaluation. For such expensive to-evaluate functions, we chose Bayesian optimization as our optimization framework which has empirically proven sample efficient than other simulation-based optimization methods. By utilizing Bayesian optimization algorithms, the truss design involves iteratively evaluating a set of candidate truss designs and updating a probabilistic model of the design space based on the results. The model is used to predict the performance of each candidate design, and the next candidate design is selected based on the prediction and an acquisition function that balances exploration and exploitation of the design space. Our result can be used as a baseline for future study on AI-based optimization in expensive engineering domains especially in finite element Analysis.

In a variety of applications, including nonparametric instrumental variable (NPIV) analysis, proximal causal inference under unmeasured confounding, and missing-not-at-random data with shadow variables, we are interested in inference on a continuous linear functional (e.g., average causal effects) of nuisance function (e.g., NPIV regression) defined by conditional moment restrictions. These nuisance functions are generally weakly identified, in that the conditional moment restrictions can be severely ill-posed as well as admit multiple solutions. This is sometimes resolved by imposing strong conditions that imply the function can be estimated at rates that make inference on the functional possible. In this paper, we study a novel condition for the functional to be strongly identified even when the nuisance function is not; that is, the functional is amenable to asymptotically-normal estimation at $\sqrt{n}$-rates. The condition implies the existence of debiasing nuisance functions, and we propose penalized minimax estimators for both the primary and debiasing nuisance functions. The proposed nuisance estimators can accommodate flexible function classes, and importantly they can converge to fixed limits determined by the penalization regardless of the identifiability of the nuisances. We use the penalized nuisance estimators to form a debiased estimator for the functional of interest and prove its asymptotic normality under generic high-level conditions, which provide for asymptotically valid confidence intervals. We also illustrate our method in a novel partially linear proximal causal inference problem and a partially linear instrumental variable regression problem.

The univariate generalized extreme value (GEV) distribution is the most commonly used tool for analyzing the properties of rare events. The ever greater utilization of Bayesian methods for extreme value analysis warrants detailed theoretical investigation, which has thus far been underdeveloped. Even the most basic asymptotic results are difficult to obtain because the GEV fails to satisfy standard regularity conditions. Here, we prove that the posterior distribution of the GEV parameter vector, given $n$ independent and identically distributed samples, converges in distribution to a trivariate normal distribution. The proof necessitates analyzing integrals of the GEV likelihood function over the entire parameter space, which requires considerable care because the support of the GEV density depends on the parameters in complicated ways.

In order to solve tasks like uncertainty quantification or hypothesis tests in Bayesian imaging inverse problems, we often have to draw samples from the arising posterior distribution. For the usually log-concave but high-dimensional posteriors, Markov chain Monte Carlo methods based on time discretizations of Langevin diffusion are a popular tool. If the potential defining the distribution is non-smooth, these discretizations are usually of an implicit form leading to Langevin sampling algorithms that require the evaluation of proximal operators. For some of the potentials relevant in imaging problems this is only possible approximately using an iterative scheme. We investigate the behaviour of a proximal Langevin algorithm under the presence of errors in the evaluation of proximal mappings. We generalize existing non-asymptotic and asymptotic convergence results of the exact algorithm to our inexact setting and quantify the bias between the target and the algorithm's stationary distribution due to the errors. We show that the additional bias stays bounded for bounded errors and converges to zero for decaying errors in a strongly convex setting. We apply the inexact algorithm to sample numerically from the posterior of typical imaging inverse problems in which we can only approximate the proximal operator by an iterative scheme and validate our theoretical convergence results.

The rate-distortion curve captures the fundamental tradeoff between compression length and resolution in lossy data compression. However, it conceals the underlying dynamics of optimal source encodings or test channels. We argue that these typically follow a piecewise smooth trajectory as the source information is compressed. These smooth dynamics are interrupted at bifurcations, where solutions change qualitatively. Sub-optimal test channels may collide or exchange optimality there, for example. There is typically a plethora of sub-optimal solutions, which stems from restrictions of the reproduction alphabet. We devise a family of algorithms that exploits the underlying dynamics to track a given test channel along the rate-distortion curve. To that end, we express implicit derivatives at the roots of a non-linear operator by higher derivative tensors. Providing closed-form formulae for the derivative tensors of Blahut's algorithm thus yields implicit derivatives of arbitrary order at a given test channel, thereby approximating others in its vicinity. Finally, our understanding of bifurcations guarantees the optimality of the root being traced, under mild assumptions, while allowing us to detect when our assumptions fail. Beyond the interest in rate distortion, this is an example of how understanding a problem's bifurcations can be translated to a numerical algorithm.

The previous work for event extraction has mainly focused on the predictions for event triggers and argument roles, treating entity mentions as being provided by human annotators. This is unrealistic as entity mentions are usually predicted by some existing toolkits whose errors might be propagated to the event trigger and argument role recognition. Few of the recent work has addressed this problem by jointly predicting entity mentions, event triggers and arguments. However, such work is limited to using discrete engineering features to represent contextual information for the individual tasks and their interactions. In this work, we propose a novel model to jointly perform predictions for entity mentions, event triggers and arguments based on the shared hidden representations from deep learning. The experiments demonstrate the benefits of the proposed method, leading to the state-of-the-art performance for event extraction.

北京阿比特科技有限公司