亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Approximating invariant subspaces of generalized eigenvalue problems (GEPs) is a fundamental computational problem at the core of machine learning and scientific computing. It is, for example, the root of Principal Component Analysis (PCA) for dimensionality reduction, data visualization, and noise filtering, and of Density Functional Theory (DFT), arguably the most popular method to calculate the electronic structure of materials. Given Hermitian $H,S\in\mathbb{C}^{n\times n}$, where $S$ is positive-definite, let $\Pi_k$ be the true spectral projector on the invariant subspace that is associated with the $k$ smallest (or largest) eigenvalues of the GEP $HC=SC\Lambda$, for some $k\in[n]$. We show that we can compute a matrix $\widetilde\Pi_k$ such that $\lVert\Pi_k-\widetilde\Pi_k\rVert_2\leq \epsilon$, in $O\left( n^{\omega+\eta}\mathrm{polylog}(n,\epsilon^{-1},\kappa(S),\mathrm{gap}_k^{-1}) \right)$ bit operations in the floating point model, for some $\epsilon\in(0,1)$, with probability $1-1/n$. Here, $\eta>0$ is arbitrarily small, $\omega\lesssim 2.372$ is the matrix multiplication exponent, $\kappa(S)=\lVert S\rVert_2\lVert S^{-1}\rVert_2$, and $\mathrm{gap}_k$ is the gap between eigenvalues $k$ and $k+1$. To achieve such provable "forward-error" guarantees, our methods rely on a new $O(n^{\omega+\eta})$ stability analysis for the Cholesky factorization, and a smoothed analysis for computing spectral gaps, which can be of independent interest. Ultimately, we obtain new matrix multiplication-type bit complexity upper bounds for PCA problems, including classical PCA and (randomized) low-rank approximation.

相關內容

在統計中(zhong),主(zhu)成(cheng)分分析(PCA)是一(yi)種通過最(zui)大化(hua)每個維度(du)(du)的(de)(de)方(fang)差來(lai)將較(jiao)高(gao)維度(du)(du)空間中(zhong)的(de)(de)數據(ju)(ju)投影到(dao)較(jiao)低維度(du)(du)空間中(zhong)的(de)(de)方(fang)法。給定二維,三維或更高(gao)維空間中(zhong)的(de)(de)點(dian)集合(he),可以將“最(zui)佳(jia)(jia)擬合(he)”線(xian)(xian)定義為最(zui)小化(hua)從點(dian)到(dao)線(xian)(xian)的(de)(de)平(ping)(ping)均平(ping)(ping)方(fang)距(ju)離的(de)(de)線(xian)(xian)。可以從垂(chui)直(zhi)于第(di)一(yi)條直(zhi)線(xian)(xian)的(de)(de)方(fang)向類似地選擇下一(yi)條最(zui)佳(jia)(jia)擬合(he)線(xian)(xian)。重復(fu)此(ci)過程會(hui)產生一(yi)個正交的(de)(de)基礎,其中(zhong)數據(ju)(ju)的(de)(de)不同單個維度(du)(du)是不相(xiang)關的(de)(de)。 這些基向量(liang)稱為主(zhu)成(cheng)分。

Causality plays an important role in understanding intelligent behavior, and there is a wealth of literature on mathematical models for causality, most of which is focused on causal graphs. Causal graphs are a powerful tool for a wide range of applications, in particular when the relevant variables are known and at the same level of abstraction. However, the given variables can also be unstructured data, like pixels of an image. Meanwhile, the causal variables, such as the positions of objects in the image, can be arbitrary deterministic functions of the given variables. Moreover, the causal variables may form a hierarchy of abstractions, in which the macro-level variables are deterministic functions of the micro-level variables. Causal graphs are limited when it comes to modeling this kind of situation. In the presence of deterministic relationships there is generally no causal graph that satisfies both the Markov condition and the faithfulness condition. We introduce factored space models as an alternative to causal graphs which naturally represent both probabilistic and deterministic relationships at all levels of abstraction. Moreover, we introduce structural independence and establish that it is equivalent to statistical independence in every distribution that factorizes over the factored space. This theorem generalizes the classical soundness and completeness theorem for d-separation.

In this paper, we propose a machine learning (ML)-based moment closure model for the linearized Boltzmann equation of semiconductor devices, addressing both the deterministic and stochastic settings. Our approach leverages neural networks to learn the spatial gradient of the unclosed highest-order moment, enabling effective training through natural output normalization. For the deterministic problem, to ensure global hyperbolicity and stability, we derive and apply the constraints that enforce symmetrizable hyperbolicity of the system. For the stochastic problem, we adopt the generalized polynomial chaos (gPC)-based stochastic Galerkin method to discretize the random variables, resulting in a system for which the approach in the deterministic case can be used similarly. Several numerical experiments will be shown to demonstrate the effectiveness and accuracy of our ML-based moment closure model for the linear semiconductor Boltzmann equation with (or without) uncertainties.

Efficient estimation of nonlinear functions of quantum states is crucial for various key tasks in quantum computing, such as entanglement spectroscopy, fidelity estimation, and feature analysis of quantum data. Conventional methods using state tomography and estimating numerous terms of the series expansion are computationally expensive, while alternative approaches based on a purified query oracle impose practical constraints. In this paper, we introduce the quantum state function (QSF) framework by extending the SWAP test via linear combination of unitaries and parameterized quantum circuits. Our framework enables the implementation of arbitrary degree-$n$ polynomial functions of quantum states with precision $\varepsilon$ using $\mathcal{O}(n/\varepsilon^2)$ copies. We further apply QSF for developing quantum algorithms of fundamental tasks, achieving a sample complexity of $\tilde{\mathcal{O}}(1/(\varepsilon^2\kappa))$ for both von Neumann entropy estimation and quantum state fidelity calculations, where $\kappa$ represents the minimal nonzero eigenvalue. Our work establishes a concise and unified paradigm for estimating and realizing nonlinear functions of quantum states, paving the way for the practical processing and analysis of quantum data.

Many partial differential equations (PDEs) such as Navier--Stokes equations in fluid mechanics, inelastic deformation in solids, and transient parabolic and hyperbolic equations do not have an exact, primal variational structure. Recently, a variational principle based on the dual (Lagrange multiplier) field was proposed. The essential idea in this approach is to treat the given PDE as constraints, and to invoke an arbitrarily chosen auxiliary potential with strong convexity properties to be optimized. This leads to requiring a convex dual functional to be minimized subject to Dirichlet boundary conditions on dual variables, with the guarantee that even PDEs that do not possess a variational structure in primal form can be solved via a variational principle. The vanishing of the first variation of the dual functional is, up to Dirichlet boundary conditions on dual fields, the weak form of the primal PDE problem with the dual-to-primal change of variables incorporated. We derive the dual weak form for the linear, one-dimensional, transient convection-diffusion equation. A Galerkin discretization is used to obtain the discrete equations, with the trial and test functions chosen as linear combination of either RePU activation functions (shallow neural network) or B-spline basis functions; the corresponding stiffness matrix is symmetric. For transient problems, a space-time Galerkin implementation is used with tensor-product B-splines as approximating functions. Numerical results are presented for the steady-state and transient convection-diffusion equation, and transient heat conduction. The proposed method delivers sound accuracy for ODEs and PDEs and rates of convergence are established in the $L^2$ norm and $H^1$ seminorm for the steady-state convection-diffusion problem.

We present an efficient algorithm for the application of sequences of planar rotations to a matrix. Applying such sequences efficiently is important in many numerical linear algebra algorithms for eigenvalues. Our algorithm is novel in three main ways. First, we introduce a new kernel that is optimized for register reuse in a novel way. Second, we introduce a blocking and packing scheme that improves the cache efficiency of the algorithm. Finally, we thoroughly analyze the memory operations of the algorithm which leads to important theoretical insights and makes it easier to select good parameters. Numerical experiments show that our algorithm outperforms the state-of-the-art and achieves a flop rate close to the theoretical peak on modern hardware.

In this paper, in order to improve the spatial accuracy, the exponential integrator Fourier Galerkin method (EIFG) is proposed for solving semilinear parabolic equations in rectangular domains. In this proposed method, the spatial discretization is first carried out by the Fourier-based Galerkin approximation, and then the time integration of the resulting semi-discrete system is approximated by the explicit exponential Runge-Kutta approach, which leads to the fully-discrete numerical solution. With certain regularity assumptions on the model problem, error estimate measured in $H^2$-norm is explicitly derived for EIFG method with two RK stages. Several two and three dimensional examples are shown to demonstrate the excellent performance of EIFG method, which are coincident to the theoretical results.

We present a simple universal algorithm for high-dimensional integration which has the optimal error rate (independent of the dimension) in all weighted Korobov classes both in the randomized and the deterministic setting. Our theoretical findings are complemented by numerical tests.

We propose a quadrature-based formula for computing the exponential function of matrices with a non-oscillatory integral on an infinite interval and an oscillatory integral on a finite interval. In the literature, existing quadrature-based formulas are based on the inverse Laplace transform or the Fourier transform. We show these expressions are essentially equivalent in terms of complex integrals and choose the former as a starting point to reduce computational cost. By choosing a simple integral path, we derive an integral expression mentioned above. Then, we can easily apply the double-exponential formula and the Gauss-Legendre formula, which have rigorous error bounds. As numerical experiments show, the proposed formula outperforms the existing formulas when the imaginary parts of the eigenvalues of matrices have large absolute values.

The problem of distributed matrix multiplication with straggler tolerance over finite fields is considered, focusing on field sizes for which previous solutions were not applicable (for instance, the field of two elements). We employ Reed-Muller-type codes for explicitly constructing the desired algorithms and study their parameters by translating the problem into a combinatorial problem involving sums of discrete convex sets. We generalize polynomial codes and matdot codes, discussing the impossibility of the latter being applicable for very small field sizes, while providing optimal solutions for some regimes of parameters in both cases.

Parameter inference is essential when interpreting observational data using mathematical models. Standard inference methods for differential equation models typically rely on obtaining repeated numerical solutions of the differential equation(s). Recent results have explored how numerical truncation error can have major, detrimental, and sometimes hidden impacts on likelihood-based inference by introducing false local maxima into the log-likelihood function. We present a straightforward approach for inference that eliminates the need for solving the underlying differential equations, thereby completely avoiding the impact of truncation error. Open-access Jupyter notebooks, available on GitHub, allow others to implement this method for a broad class of widely-used models to interpret biological data.

北京阿比特科技有限公司