Analytically, finding the origins of cooperative behavior in infinite-player games is an exciting topic of current interest. Previously, cooperative behavior has been studied by considering game magnetization and individual player's average payoff as indicators. This paper shows that game susceptibility, correlation, and payoff capacity can aid in understanding cooperative behavior in social dilemmas in the thermodynamic limit. In this paper, we compare three analytical methods, i.e., Nash equilibrium mapping (NEM), Darwinian selection (DS), and Aggregate selection (AS), with a numerical-based method (ABM) via the game susceptibility, correlation, and payoff capacity as indicators of cooperative behavior. AS and DS fail compared to NEM and ABM by giving incorrect results for the indicators in question. The results obtained via NEM and ABM are in good agreement for all three indicators in question, for both Hawk-Dove and the Public goods games. After comparing the results obtained for all five indicators, we see that individual players' average payoff and payoff capacity are the best indicators to study cooperative behavior among players in the thermodynamic limit. This paper finds that NEM and ABM, along with the selected indicators, offer valuable insights into cooperative behavior in infinite-player games, contributing to understanding social dilemmas in the thermodynamic limit.
We show that the known list-decoding algorithms for univariate multiplicity and folded Reed-Solomon codes can be made to run in $\tilde{O}(n)$ time. Univariate multiplicity codes and FRS codes are natural variants of Reed-Solomon codes that were discovered and studied for their applications to list decoding. It is known that for every $\epsilon>0$, and rate $r \in (0,1)$, there exist explicit families of these codes that have rate $r$ and can be list decoded from a $(1-r-\epsilon)$ fraction of errors with constant list size in polynomial time (Guruswami & Wang (IEEE Trans. Inform. Theory 2013) and Kopparty, Ron-Zewi, Saraf & Wootters (SIAM J. Comput. 2023)). In this work, we present randomized algorithms that perform the above list-decoding tasks in $\tilde{O}(n)$, where $n$ is the block-length of the code. Our algorithms have two main components. The first component builds upon the lattice-based approach of Alekhnovich (IEEE Trans. Inf. Theory 2005), who designed a $\tilde{O}(n)$ time list-decoding algorithm for Reed-Solomon codes approaching the Johnson radius. As part of the second component, we design $\tilde{O}(n)$ time algorithms for two natural algebraic problems: given a $(m+2)$-variate polynomial $Q(x,y_0,\dots,y_m) = \tilde{Q}(x) + \sum_{i=0}^m Q_i(x)\cdot y_i$ the first algorithm solves order-$m$ linear differential equations of the form $Q\left(x, f(x), \frac{df}{dx}, \dots,\frac{d^m f}{dx^m}\right) \equiv 0$ while the second solves functional equations of the form $Q\left(x, f(x), f(\gamma x), \dots,f(\gamma^m x)\right) \equiv 0$, where $m$ is an arbitrary constant and $\gamma$ is a field element of sufficiently high order. These algorithms can be viewed as generalizations of classical $\tilde{O}(n)$ time algorithms of Sieveking (Computing 1972) and Kung (Numer. Math. 1974) for computing the modular inverse of a power series, and might be of independent interest.
Testing the equality of mean vectors across $g$ different groups plays an important role in many scientific fields. In regular frameworks, likelihood-based statistics under the normality assumption offer a general solution to this task. However, the accuracy of standard asymptotic results is not reliable when the dimension $p$ of the data is large relative to the sample size $n_i$ of each group. We propose here an exact directional test for the equality of $g$ normal mean vectors with identical unknown covariance matrix, provided that $\sum_{i=1}^g n_i \ge p+g+1$. In the case of two groups ($g=2$), the directional test is equivalent to the Hotelling's $T^2$ test. In the more general situation where the $g$ independent groups may have different unknown covariance matrices, although exactness does not hold, simulation studies show that the directional test is more accurate than most commonly used likelihood based solutions. Robustness of the directional approach and its competitors under deviation from multivariate normality is also numerically investigated.
The push-forward operation enables one to redistribute a probability measure through a deterministic map. It plays a key role in statistics and optimization: many learning problems (notably from optimal transport, generative modeling, and algorithmic fairness) include constraints or penalties framed as push-forward conditions on the model. However, the literature lacks general theoretical insights on the (non)convexity of such constraints and its consequences on the associated learning problems. This paper aims at filling this gap. In a first part, we provide a range of sufficient and necessary conditions for the (non)convexity of two sets of functions: the maps transporting one probability measure to another; the maps inducing equal output distributions across distinct probability measures. This highlights that for most probability measures, these push-forward constraints are not convex. In a second time, we show how this result implies critical limitations on the design of convex optimization problems for learning generative models or group-fair predictors. This work will hopefully help researchers and practitioners have a better understanding of the critical impact of push-forward conditions onto convexity.
Three equivalent characterizations of probability measures through independence criteria are given. These characterizations lead to a family of Brascamp--Lieb-type inequalities for relative entropy, determine equilibrium states and sharp rates of convergence for certain linear Boltzmann-type dynamics, and unify an assortment of $L^2$ inequalities in probability.
In decision-making, maxitive functions are used for worst-case and best-case evaluations. Maxitivity gives rise to a rich structure that is well-studied in the context of the pointwise order. In this article, we investigate maxitivity with respect to general preorders and provide a representation theorem for such functionals. The results are illustrated for different stochastic orders in the literature, including the usual stochastic order, the increasing convex/concave order, and the dispersive order.
Reflective surfaces present a persistent challenge for reliable 3D mapping and perception in robotics and autonomous systems. However, existing reflection datasets and benchmarks remain limited to sparse 2D data. This paper introduces the first large-scale 3D reflection detection dataset containing more than 50,000 aligned samples of multi-return Lidar, RGB images, and 2D/3D semantic labels across diverse indoor environments with various reflections. Textured 3D ground truth meshes enable automatic point cloud labeling to provide precise ground truth annotations. Detailed benchmarks evaluate three Lidar point cloud segmentation methods, as well as current state-of-the-art image segmentation networks for glass and mirror detection. The proposed dataset advances reflection detection by providing a comprehensive testbed with precise global alignment, multi-modal data, and diverse reflective objects and materials. It will drive future research towards reliable reflection detection. The dataset is publicly available at //3dref.github.io
To date, most methods for simulating conditioned diffusions are limited to the Euclidean setting. The conditioned process can be constructed using a change of measure known as Doob's $h$-transform. The specific type of conditioning depends on a function $h$ which is typically unknown in closed form. To resolve this, we extend the notion of guided processes to a manifold $M$, where one replaces $h$ by a function based on the heat kernel on $M$. We consider the case of a Brownian motion with drift, constructed using the frame bundle of $M$, conditioned to hit a point $x_T$ at time $T$. We prove equivalence of the laws of the conditioned process and the guided process with a tractable Radon-Nikodym derivative. Subsequently, we show how one can obtain guided processes on any manifold $N$ that is diffeomorphic to $M$ without assuming knowledge of the heat kernel on $N$. We illustrate our results with numerical simulations and an example of parameter estimation where a diffusion process on the torus is observed discretely in time.
This paper concerns an expansion of first-order Belnap-Dunn logic whose connectives and quantifiers are all familiar from classical logic. The language and logical consequence relation of the logic are defined, a proof system for the defined logic is presented, and the soundness and completeness of the presented proof system is established. The close relationship between the logical consequence relations of the defined logic and the version of classical logic with the same language is illustrated by the minor differences between the presented proof system and a sound and complete proof system for the version of classical logic with the same language. Moreover, fifteen classical laws of logical equivalence are given by which the logical equivalence relation of the defined logic distinguishes itself from the logical equivalence relation of many logics that are closely related at first glance.
Multi-modality fusion is proven an effective method for 3d perception for autonomous driving. However, most current multi-modality fusion pipelines for LiDAR semantic segmentation have complicated fusion mechanisms. Point painting is a quite straight forward method which directly bind LiDAR points with visual information. Unfortunately, previous point painting like methods suffer from projection error between camera and LiDAR. In our experiments, we find that this projection error is the devil in point painting. As a result of that, we propose a depth aware point painting mechanism, which significantly boosts the multi-modality fusion. Apart from that, we take a deeper look at the desired visual feature for LiDAR to operate semantic segmentation. By Lifting Visual Information as Cue, LVIC ranks 1st on nuScenes LiDAR semantic segmentation benchmark. Our experiments show the robustness and effectiveness. Codes would be make publicly available soon.
Promoting behavioural diversity is critical for solving games with non-transitive dynamics where strategic cycles exist, and there is no consistent winner (e.g., Rock-Paper-Scissors). Yet, there is a lack of rigorous treatment for defining diversity and constructing diversity-aware learning dynamics. In this work, we offer a geometric interpretation of behavioural diversity in games and introduce a novel diversity metric based on \emph{determinantal point processes} (DPP). By incorporating the diversity metric into best-response dynamics, we develop \emph{diverse fictitious play} and \emph{diverse policy-space response oracle} for solving normal-form games and open-ended games. We prove the uniqueness of the diverse best response and the convergence of our algorithms on two-player games. Importantly, we show that maximising the DPP-based diversity metric guarantees to enlarge the \emph{gamescape} -- convex polytopes spanned by agents' mixtures of strategies. To validate our diversity-aware solvers, we test on tens of games that show strong non-transitivity. Results suggest that our methods achieve much lower exploitability than state-of-the-art solvers by finding effective and diverse strategies.