Profile-guided optimizations rely on profile data for directing compilers to generate optimized code. To achieve the maximum performance boost, profile data needs to be collected on the same version of the binary that is being optimized. In practice however, there is typically a gap between the profile collection and the release, which makes a portion of the profile invalid for optimizations. This phenomenon is known as profile staleness, and it is a serious practical problem for data-center workloads both for compilers and binary optimizers. In this paper we thoroughly study the staleness problem and propose the first practical solution for utilizing profiles collected on binaries built from several revisions behind the release. Our algorithm is developed and implemented in a mainstream open-source post-link optimizer, BOLT. An extensive evaluation on a variety of standalone benchmarks and production services indicates that the new method recovers up to $0.8$ of the maximum BOLT benefit, even when most of the input profile data is stale and would have been discarded by the optimizer otherwise.
We propose a new method for cloth digitalization. Deviating from existing methods which learn from data captured under relatively casual settings, we propose to learn from data captured in strictly tested measuring protocols, and find plausible physical parameters of the cloths. However, such data is currently absent, so we first propose a new dataset with accurate cloth measurements. Further, the data size is considerably smaller than the ones in current deep learning, due to the nature of the data capture process. To learn from small data, we propose a new Bayesian differentiable cloth model to estimate the complex material heterogeneity of real cloths. It can provide highly accurate digitalization from very limited data samples. Through exhaustive evaluation and comparison, we show our method is accurate in cloth digitalization, efficient in learning from limited data samples, and general in capturing material variations. Code and data are available //github.com/realcrane/Bayesian-Differentiable-Physics-for-Cloth-Digitalization
Probabilistic circuits (PCs) have gained prominence in recent years as a versatile framework for discussing probabilistic models that support tractable queries and are yet expressive enough to model complex probability distributions. Nevertheless, tractability comes at a cost: PCs are less expressive than neural networks. In this paper we introduce probabilistic neural circuits (PNCs), which strike a balance between PCs and neural nets in terms of tractability and expressive power. Theoretically, we show that PNCs can be interpreted as deep mixtures of Bayesian networks. Experimentally, we demonstrate that PNCs constitute powerful function approximators.
We present an automated technique for computing a map between two genus-zero shapes, which matches semantically corresponding regions to one another. Lack of annotated data prohibits direct inference of 3D semantic priors; instead, current State-of-the-art methods predominantly optimize geometric properties or require varying amounts of manual annotation. To overcome the lack of annotated training data, we distill semantic matches from pre-trained vision models: our method renders the pair of 3D shapes from multiple viewpoints; the resulting renders are then fed into an off-the-shelf image-matching method which leverages a pretrained visual model to produce feature points. This yields semantic correspondences, which can be projected back to the 3D shapes, producing a raw matching that is inaccurate and inconsistent between different viewpoints. These correspondences are refined and distilled into an inter-surface map by a dedicated optimization scheme, which promotes bijectivity and continuity of the output map. We illustrate that our approach can generate semantic surface-to-surface maps, eliminating manual annotations or any 3D training data requirement. Furthermore, it proves effective in scenarios with high semantic complexity, where objects are non-isometrically related, as well as in situations where they are nearly isometric.
Blind image restoration (IR) is a common yet challenging problem in computer vision. Classical model-based methods and recent deep learning (DL)-based methods represent two different methodologies for this problem, each with their own merits and drawbacks. In this paper, we propose a novel blind image restoration method, aiming to integrate both the advantages of them. Specifically, we construct a general Bayesian generative model for the blind IR, which explicitly depicts the degradation process. In this proposed model, a pixel-wise non-i.i.d. Gaussian distribution is employed to fit the image noise. It is with more flexibility than the simple i.i.d. Gaussian or Laplacian distributions as adopted in most of conventional methods, so as to handle more complicated noise types contained in the image degradation. To solve the model, we design a variational inference algorithm where all the expected posteriori distributions are parameterized as deep neural networks to increase their model capability. Notably, such an inference algorithm induces a unified framework to jointly deal with the tasks of degradation estimation and image restoration. Further, the degradation information estimated in the former task is utilized to guide the latter IR process. Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
Modern deep learning tools are remarkably effective in addressing intricate problems. However, their operation as black-box models introduces increased uncertainty in predictions. Additionally, they contend with various challenges, including the need for substantial storage space in large networks, issues of overfitting, underfitting, vanishing gradients, and more. This study explores the concept of Bayesian Neural Networks, presenting a novel architecture designed to significantly alleviate the storage space complexity of a network. Furthermore, we introduce an algorithm adept at efficiently handling uncertainties, ensuring robust convergence values without becoming trapped in local optima, particularly when the objective function lacks perfect convexity.
Disentangled Representation Learning (DRL) aims to learn a model capable of identifying and disentangling the underlying factors hidden in the observable data in representation form. The process of separating underlying factors of variation into variables with semantic meaning benefits in learning explainable representations of data, which imitates the meaningful understanding process of humans when observing an object or relation. As a general learning strategy, DRL has demonstrated its power in improving the model explainability, controlability, robustness, as well as generalization capacity in a wide range of scenarios such as computer vision, natural language processing, data mining etc. In this article, we comprehensively review DRL from various aspects including motivations, definitions, methodologies, evaluations, applications and model designs. We discuss works on DRL based on two well-recognized definitions, i.e., Intuitive Definition and Group Theory Definition. We further categorize the methodologies for DRL into four groups, i.e., Traditional Statistical Approaches, Variational Auto-encoder Based Approaches, Generative Adversarial Networks Based Approaches, Hierarchical Approaches and Other Approaches. We also analyze principles to design different DRL models that may benefit different tasks in practical applications. Finally, we point out challenges in DRL as well as potential research directions deserving future investigations. We believe this work may provide insights for promoting the DRL research in the community.
Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.
The aim of this work is to develop a fully-distributed algorithmic framework for training graph convolutional networks (GCNs). The proposed method is able to exploit the meaningful relational structure of the input data, which are collected by a set of agents that communicate over a sparse network topology. After formulating the centralized GCN training problem, we first show how to make inference in a distributed scenario where the underlying data graph is split among different agents. Then, we propose a distributed gradient descent procedure to solve the GCN training problem. The resulting model distributes computation along three lines: during inference, during back-propagation, and during optimization. Convergence to stationary solutions of the GCN training problem is also established under mild conditions. Finally, we propose an optimization criterion to design the communication topology between agents in order to match with the graph describing data relationships. A wide set of numerical results validate our proposal. To the best of our knowledge, this is the first work combining graph convolutional neural networks with distributed optimization.
Knowledge graph (KG) embedding encodes the entities and relations from a KG into low-dimensional vector spaces to support various applications such as KG completion, question answering, and recommender systems. In real world, knowledge graphs (KGs) are dynamic and evolve over time with addition or deletion of triples. However, most existing models focus on embedding static KGs while neglecting dynamics. To adapt to the changes in a KG, these models need to be re-trained on the whole KG with a high time cost. In this paper, to tackle the aforementioned problem, we propose a new context-aware Dynamic Knowledge Graph Embedding (DKGE) method which supports the embedding learning in an online fashion. DKGE introduces two different representations (i.e., knowledge embedding and contextual element embedding) for each entity and each relation, in the joint modeling of entities and relations as well as their contexts, by employing two attentive graph convolutional networks, a gate strategy, and translation operations. This effectively helps limit the impacts of a KG update in certain regions, not in the entire graph, so that DKGE can rapidly acquire the updated KG embedding by a proposed online learning algorithm. Furthermore, DKGE can also learn KG embedding from scratch. Experiments on the tasks of link prediction and question answering in a dynamic environment demonstrate the effectiveness and efficiency of DKGE.
Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.