Logistic regression training over encrypted data has been an attractive idea to security concerns for years. In this paper, we propose a faster gradient variant called $\texttt{quadratic gradient}$ for privacy-preserving logistic regression training. The core of $\texttt{quadratic gradient}$ can be seen as an extension of the simplified fixed Hessian. We enhance Nesterov's accelerated gradient (NAG) and Adaptive Gradient Algorithm (Adagrad) respectively with $\texttt{quadratic gradient}$ and evaluate the enhanced algorithms on several datasets. %gradient $ascent$ methods with this gradient variant on the gene dataset provided by the 2017 iDASH competition and other datasets. Experiments show that the enhanced methods have a state-of-the-art performance in convergence speed compared to the raw first-order gradient methods. We then adopt the enhanced NAG method to implement homomorphic logistic regression training, obtaining a comparable result by only $3$ iterations. There is a promising chance that $\texttt{quadratic gradient}$ could be used to enhance other first-order gradient methods for general numerical optimization problems.
In this paper, we consider a deterministic online linear regression model where we allow the responses to be multivariate. To address this problem, we introduce MultiVAW, a method that extends the well-known Vovk-Azoury-Warmuth algorithm to the multivariate setting, and show that it also enjoys logarithmic regret in time. We apply our results to the online hierarchical forecasting problem and recover an algorithm from this literature as a special case, allowing us to relax the hypotheses usually made for its analysis.
This paper addresses the problem of integrating local guide policies into a Reinforcement Learning agent. For this, we show how to adapt existing algorithms to this setting before introducing a novel algorithm based on a noisy policy-switching procedure. This approach builds on a proper Approximate Policy Evaluation (APE) scheme to provide a perturbation that carefully leads the local guides towards better actions. We evaluated our method on a set of classical Reinforcement Learning problems, including safety-critical systems where the agent cannot enter some areas at the risk of triggering catastrophic consequences. In all the proposed environments, our agent proved to be efficient at leveraging those policies to improve the performance of any APE-based Reinforcement Learning algorithm, especially in its first learning stages.
In this paper, we propose a new setting for generating product descriptions from images, augmented by marketing keywords. It leverages the combined power of visual and textual information to create descriptions that are more tailored to the unique features of products. For this setting, previous methods utilize visual and textual encoders to encode the image and keywords and employ a language model-based decoder to generate the product description. However, the generated description is often inaccurate and generic since same-category products have similar copy-writings, and optimizing the overall framework on large-scale samples makes models concentrate on common words yet ignore the product features. To alleviate the issue, we present a simple and effective Multimodal In-Context Tuning approach, named ModICT, which introduces a similar product sample as the reference and utilizes the in-context learning capability of language models to produce the description. During training, we keep the visual encoder and language model frozen, focusing on optimizing the modules responsible for creating multimodal in-context references and dynamic prompts. This approach preserves the language generation prowess of large language models (LLMs), facilitating a substantial increase in description diversity. To assess the effectiveness of ModICT across various language model scales and types, we collect data from three distinct product categories within the E-commerce domain. Extensive experiments demonstrate that ModICT significantly improves the accuracy (by up to 3.3% on Rouge-L) and diversity (by up to 9.4% on D-5) of generated results compared to conventional methods. Our findings underscore the potential of ModICT as a valuable tool for enhancing automatic generation of product descriptions in a wide range of applications.
Maximum mean discrepancy (MMD) flows suffer from high computational costs in large scale computations. In this paper, we show that MMD flows with Riesz kernels $K(x,y) = - \|x-y\|^r$, $r \in (0,2)$ have exceptional properties which allow their efficient computation. We prove that the MMD of Riesz kernels, which is also known as energy distance, coincides with the MMD of their sliced version. As a consequence, the computation of gradients of MMDs can be performed in the one-dimensional setting. Here, for $r=1$, a simple sorting algorithm can be applied to reduce the complexity from $O(MN+N^2)$ to $O((M+N)\log(M+N))$ for two measures with $M$ and $N$ support points. As another interesting follow-up result, the MMD of compactly supported measures can be estimated from above and below by the Wasserstein-1 distance. For the implementations we approximate the gradient of the sliced MMD by using only a finite number $P$ of slices. We show that the resulting error has complexity $O(\sqrt{d/P})$, where $d$ is the data dimension. These results enable us to train generative models by approximating MMD gradient flows by neural networks even for image applications. We demonstrate the efficiency of our model by image generation on MNIST, FashionMNIST and CIFAR10.
In this paper, we unveil a fundamental side channel in Wi-Fi networks, specifically the observable frame size, which can be exploited by attackers to conduct TCP hijacking attacks. Despite the various security mechanisms (e.g., WEP and WPA2/WPA3) implemented to safeguard Wi-Fi networks, our study reveals that an off path attacker can still extract sufficient information from the frame size side channel to hijack the victim's TCP connection. Our side channel attack is based on two significant findings: (i) response packets (e.g., ACK and RST) generated by TCP receivers vary in size, and (ii) the encrypted frames containing these response packets have consistent and distinguishable sizes. By observing the size of the victim's encrypted frames, the attacker can detect and hijack the victim's TCP connections. We validate the effectiveness of this side channel attack through two case studies, i.e., SSH DoS and web traffic manipulation. Furthermore, we conduct extensive measurements to evaluate the impact of our attack on real-world Wi-Fi networks. We test 30 popular wireless routers from 9 well-known vendors, and none of these routers can protect victims from our attack. Also, we implement our attack in 80 real-world Wi-Fi networks and successfully hijack the victim's TCP connections in 69 (86%) evaluated Wi-Fi networks. We have responsibly disclosed the vulnerability to the Wi-Fi Alliance and proposed several mitigation strategies to address this issue.
Self-disclosure, while being common and rewarding in social media interaction, also poses privacy risks. In this paper, we take the initiative to protect the user-side privacy associated with online self-disclosure through detection and abstraction. We develop a taxonomy of 19 self-disclosure categories and curate a large corpus consisting of 4.8K annotated disclosure spans. We then fine-tune a language model for detection, achieving over 65% partial span F$_1$. We further conduct an HCI user study, with 82% of participants viewing the model positively, highlighting its real-world applicability. Motivated by the user feedback, we introduce the task of self-disclosure abstraction, which is paraphrasing disclosures into less specific terms while preserving their utility, e.g., "Im 16F" to "I'm a teenage girl". We explore various fine-tuning strategies, and our best model can generate diverse abstractions that moderately reduce privacy risks while maintaining high utility according to human evaluation. To help users in deciding which disclosures to abstract, we present a task of rating their importance for context understanding. Our fine-tuned model achieves 80% accuracy, on-par with GPT-3.5. Given safety and privacy considerations, we will only release our corpus to researchers who agree to ethical guidelines.
It has been shown that deep neural networks are prone to overfitting on biased training data. Towards addressing this issue, meta-learning employs a meta model for correcting the training bias. Despite the promising performances, super slow training is currently the bottleneck in the meta learning approaches. In this paper, we introduce a novel Faster Meta Update Strategy (FaMUS) to replace the most expensive step in the meta gradient computation with a faster layer-wise approximation. We empirically find that FaMUS yields not only a reasonably accurate but also a low-variance approximation of the meta gradient. We conduct extensive experiments to verify the proposed method on two tasks. We show our method is able to save two-thirds of the training time while still maintaining the comparable or achieving even better generalization performance. In particular, our method achieves the state-of-the-art performance on both synthetic and realistic noisy labels, and obtains promising performance on long-tailed recognition on standard benchmarks.
Co-saliency detection aims to discover the common and salient foregrounds from a group of relevant images. For this task, we present a novel adaptive graph convolutional network with attention graph clustering (GCAGC). Three major contributions have been made, and are experimentally shown to have substantial practical merits. First, we propose a graph convolutional network design to extract information cues to characterize the intra- and interimage correspondence. Second, we develop an attention graph clustering algorithm to discriminate the common objects from all the salient foreground objects in an unsupervised fashion. Third, we present a unified framework with encoder-decoder structure to jointly train and optimize the graph convolutional network, attention graph cluster, and co-saliency detection decoder in an end-to-end manner. We evaluate our proposed GCAGC method on three cosaliency detection benchmark datasets (iCoseg, Cosal2015 and COCO-SEG). Our GCAGC method obtains significant improvements over the state-of-the-arts on most of them.
Inferring missing links in knowledge graphs (KG) has attracted a lot of attention from the research community. In this paper, we tackle a practical query answering task involving predicting the relation of a given entity pair. We frame this prediction problem as an inference problem in a probabilistic graphical model and aim at resolving it from a variational inference perspective. In order to model the relation between the query entity pair, we assume that there exists an underlying latent variable (paths connecting two nodes) in the KG, which carries the equivalent semantics of their relations. However, due to the intractability of connections in large KGs, we propose to use variation inference to maximize the evidence lower bound. More specifically, our framework (\textsc{Diva}) is composed of three modules, i.e. a posterior approximator, a prior (path finder), and a likelihood (path reasoner). By using variational inference, we are able to incorporate them closely into a unified architecture and jointly optimize them to perform KG reasoning. With active interactions among these sub-modules, \textsc{Diva} is better at handling noise and coping with more complex reasoning scenarios. In order to evaluate our method, we conduct the experiment of the link prediction task on multiple datasets and achieve state-of-the-art performances on both datasets.
In this paper we address issues with image retrieval benchmarking on standard and popular Oxford 5k and Paris 6k datasets. In particular, annotation errors, the size of the dataset, and the level of challenge are addressed: new annotation for both datasets is created with an extra attention to the reliability of the ground truth. Three new protocols of varying difficulty are introduced. The protocols allow fair comparison between different methods, including those using a dataset pre-processing stage. For each dataset, 15 new challenging queries are introduced. Finally, a new set of 1M hard, semi-automatically cleaned distractors is selected. An extensive comparison of the state-of-the-art methods is performed on the new benchmark. Different types of methods are evaluated, ranging from local-feature-based to modern CNN based methods. The best results are achieved by taking the best of the two worlds. Most importantly, image retrieval appears far from being solved.