亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quantum statistical queries provide a theoretical framework for investigating the computational power of a learner with limited quantum resources. This model is particularly relevant in the current context, where available quantum devices are subject to severe noise and have limited quantum memory. On the other hand, the framework of quantum differential privacy demonstrates that noise can, in some cases, benefit the computation, enhancing robustness and statistical security. In this work, we establish an equivalence between quantum statistical queries and quantum differential privacy in the local model, extending a celebrated classical result to the quantum setting. Furthermore, we derive strong data processing inequalities for the quantum relative entropy under local differential privacy and apply this result to the task of asymmetric hypothesis testing with restricted measurements. Finally, we consider the task of quantum multi-party computation under local differential privacy. As a proof of principle, we demonstrate that the parity function is efficiently learnable in this model, whereas the corresponding classical task requires exponentially many samples.

相關內容

For efficient modulation and error control coding, the deliberate flipping approach imposes the run-length-limited(RLL) constraint by bit error before recording. From the read side, a high coding rate limits the correcting capability of RLL bit error. In this paper, we study the low-density parity-check (LDPC) coding for RLL constrained recording system based on the Unequal Error Protection (UEP) coding scheme design. The UEP capability of irregular LDPC codes is used for recovering flipped bits. We provide an allocation technique to limit the occurrence of flipped bits on the bit with robust correction capability. In addition, we consider the signal labeling design to decrease the number of nearest neighbors to enhance the robust bit. We also apply the density evolution technique to the proposed system for evaluating the code performances. In addition, we utilize the EXIT characteristic to reveal the decoding behavior of the recommended code distribution. Finally, the optimization approach for the best distribution is proven by differential evolution for the proposed system.

For efficient modulation and error control coding, the deliberate flipping approach imposes the run-length-limited(RLL) constraint by bit error before recording. From the read side, a high coding rate limits the correcting capability of RLL bit error. In this paper, we study the low-density parity-check (LDPC) coding for RLL constrained recording system based on the Unequal Error Protection (UEP) coding scheme design. The UEP capability of irregular LDPC codes is used for recovering flipped bits. We provide an allocation technique to limit the occurrence of flipped bits on the bit with robust correction capability. In addition, we consider the signal labeling design to decrease the number of nearest neighbors to enhance the robust bit. We also apply the density evolution technique to the proposed system for evaluating the code performances. In addition, we utilize the EXIT characteristic to reveal the decoding behavior of the recommended code distribution. Finally, the optimization approach for the best distribution is proven by differential evolution for the proposed system.

Recent advances in graph neural network architectures and increased computation power have revolutionized the field of combinatorial optimization (CO). Among the proposed models for CO problems, Neural Improvement (NI) models have been particularly successful. However, existing NI approaches are limited in their applicability to problems where crucial information is encoded in the edges, as they only consider node features and node-wise positional encodings. To overcome this limitation, we introduce a novel NI model capable of handling graph-based problems where information is encoded in the nodes, edges, or both. The presented model serves as a fundamental component for hill-climbing-based algorithms that guide the selection of neighborhood operations for each iteration. Conducted experiments demonstrate that the proposed model can recommend neighborhood operations that outperform conventional versions for the Preference Ranking Problem with a performance in the 99th percentile. We also extend the proposal to two well-known problems: the Traveling Salesman Problem and the Graph Partitioning Problem, recommending operations in the 98th and 97th percentile, respectively.

In enterprise organizations, data-driven decision making processes include the use of business intelligence dashboards and collaborative deliberation on communication platforms such as Slack or Teams. However, apart from those in data analyst roles, there is shallow engagement with dashboard content due to insufficient guidance, context, or access. Through a co-design study with nine enterprise professionals who use dashboard content to communicate with their colleagues, we identified design requirements for sharing selections from dashboards as interactive snapshots on collaboration platforms. We then developed Philo, an interactive demonstration environment centered around the template-based retargeting of dashboard content. Using Philo as a design probe, we interviewed our co-design participants and six additional data professionals, ultimately arriving at a set of design guidelines for fostering conversations around data in enterprise settings.

Fraud detection aims to discover fraudsters deceiving other users by, for example, leaving fake reviews or making abnormal transactions. Graph-based fraud detection methods consider this task as a classification problem with two classes: frauds or normal. We address this problem using Graph Neural Networks (GNNs) by proposing a dynamic relation-attentive aggregation mechanism. Based on the observation that many real-world graphs include different types of relations, we propose to learn a node representation per relation and aggregate the node representations using a learnable attention function that assigns a different attention coefficient to each relation. Furthermore, we combine the node representations from different layers to consider both the local and global structures of a target node, which is beneficial to improving the performance of fraud detection on graphs with heterophily. By employing dynamic graph attention in all the aggregation processes, our method adaptively computes the attention coefficients for each node. Experimental results show that our method, DRAG, outperforms state-of-the-art fraud detection methods on real-world benchmark datasets.

Disentangled Representation Learning (DRL) aims to learn a model capable of identifying and disentangling the underlying factors hidden in the observable data in representation form. The process of separating underlying factors of variation into variables with semantic meaning benefits in learning explainable representations of data, which imitates the meaningful understanding process of humans when observing an object or relation. As a general learning strategy, DRL has demonstrated its power in improving the model explainability, controlability, robustness, as well as generalization capacity in a wide range of scenarios such as computer vision, natural language processing, data mining etc. In this article, we comprehensively review DRL from various aspects including motivations, definitions, methodologies, evaluations, applications and model designs. We discuss works on DRL based on two well-recognized definitions, i.e., Intuitive Definition and Group Theory Definition. We further categorize the methodologies for DRL into four groups, i.e., Traditional Statistical Approaches, Variational Auto-encoder Based Approaches, Generative Adversarial Networks Based Approaches, Hierarchical Approaches and Other Approaches. We also analyze principles to design different DRL models that may benefit different tasks in practical applications. Finally, we point out challenges in DRL as well as potential research directions deserving future investigations. We believe this work may provide insights for promoting the DRL research in the community.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司