A key technique of machine learning and computer vision is to embed discrete weighted graphs into continuous spaces for further downstream processing. Embedding discrete hierarchical structures in hyperbolic geometry has proven very successful since it was shown that any weighted tree can be embedded in that geometry with arbitrary low distortion. Various optimization methods for hyperbolic embeddings based on common models of hyperbolic geometry have been studied. In this paper, we consider Hilbert geometry for the standard simplex which is isometric to a vector space equipped with the variation polytope norm. We study the representation power of this Hilbert simplex geometry by embedding distance matrices of graphs. Our findings demonstrate that Hilbert simplex geometry is competitive to alternative geometries such as the Poincar\'e hyperbolic ball or the Euclidean geometry for embedding tasks while being fast and numerically robust.
This paper delves into the intersection of computational theory and music, examining the concept of undecidability and its significant, yet overlooked, implications within the realm of modern music composition and production. It posits that undecidability, a principle traditionally associated with theoretical computer science, extends its relevance to the music industry. The study adopts a multidimensional approach, focusing on five key areas: (1) the Turing completeness of Ableton, a widely used digital audio workstation, (2) the undecidability of satisfiability in sound creation utilizing an array of effects, (3) the undecidability of constraints on polymeters in musical compositions, (4) the undecidability of satisfiability in just intonation harmony constraints, and (5) the undecidability of "new ordering systems". In addition to providing theoretical proof for these assertions, the paper elucidates the practical relevance of these concepts for practitioners outside the field of theoretical computer science. The ultimate aim is to foster a new understanding of undecidability in music, highlighting its broader applicability and potential to influence contemporary computer-assisted (and traditional) music making.
Recently, video recognition is emerging with the help of multi-modal learning, which focuses on integrating distinct modalities to improve the performance or robustness of the model. Although various multi-modal learning methods have been proposed and offer remarkable recognition results, almost all of these methods rely on high-quality manual annotations and assume that modalities among multi-modal data provide semantically relevant information. Unfortunately, the widely used video datasets are usually coarse-annotated or collected from the Internet. Thus, it inevitably contains a portion of noisy labels and noisy correspondence. To address this challenge, we use the audio-visual action recognition task as a proxy and propose a noise-tolerant learning framework to find anti-interference model parameters against both noisy labels and noisy correspondence. Specifically, our method consists of two phases that aim to rectify noise by the inherent correlation between modalities. First, a noise-tolerant contrastive training phase is performed to make the model immune to the possible noisy-labeled data. To alleviate the influence of noisy correspondence, we propose a cross-modal noise estimation component to adjust the consistency between different modalities. As the noisy correspondence existed at the instance level, we further propose a category-level contrastive loss to reduce its interference. Second, in the hybrid-supervised training phase, we calculate the distance metric among features to obtain corrected labels, which are used as complementary supervision to guide the training. Extensive experiments on a wide range of noisy levels demonstrate that our method significantly improves the robustness of the action recognition model and surpasses the baselines by a clear margin.
Wireless communication systems to date primarily rely on the orthogonality of resources to facilitate the design and implementation, from user access to data transmission. Emerging applications and scenarios in the sixth generation (6G) wireless systems will require massive connectivity and transmission of a deluge of data, which calls for more flexibility in the design concept that goes beyond orthogonality. Furthermore, recent advances in signal processing and learning have attracted considerable attention, as they provide promising approaches to various complex and previously intractable problems of signal processing in many fields. This article provides an overview of research efforts to date in the field of signal processing and learning for next-generation multiple access, with an emphasis on massive random access and non-orthogonal multiple access. The promising interplay with new technologies and the challenges in learning-based NGMA are discussed.
The deep learning technique has been shown to be effectively addressed several image analysis tasks in the computer-aided diagnosis scheme for mammography. The training of an efficacious deep learning model requires large data with diverse styles and qualities. The diversity of data often comes from the use of various scanners of vendors. But, in practice, it is impractical to collect a sufficient amount of diverse data for training. To this end, a novel contrastive learning is developed to equip the deep learning models with better style generalization capability. Specifically, the multi-style and multi-view unsupervised self-learning scheme is carried out to seek robust feature embedding against style diversity as a pretrained model. Afterward, the pretrained network is further fine-tuned to the downstream tasks, e.g., mass detection, matching, BI-RADS rating, and breast density classification. The proposed method has been evaluated extensively and rigorously with mammograms from various vendor style domains and several public datasets. The experimental results suggest that the proposed domain generalization method can effectively improve performance of four mammographic image tasks on the data from both seen and unseen domains, and outperform many state-of-the-art (SOTA) generalization methods.
The new era of technology has brought us to the point where it is convenient for people to share their opinions over an abundance of platforms. These platforms have a provision for the users to express themselves in multiple forms of representations, including text, images, videos, and audio. This, however, makes it difficult for users to obtain all the key information about a topic, making the task of automatic multi-modal summarization (MMS) essential. In this paper, we present a comprehensive survey of the existing research in the area of MMS.
The inductive biases of graph representation learning algorithms are often encoded in the background geometry of their embedding space. In this paper, we show that general directed graphs can be effectively represented by an embedding model that combines three components: a pseudo-Riemannian metric structure, a non-trivial global topology, and a unique likelihood function that explicitly incorporates a preferred direction in embedding space. We demonstrate the representational capabilities of this method by applying it to the task of link prediction on a series of synthetic and real directed graphs from natural language applications and biology. In particular, we show that low-dimensional cylindrical Minkowski and anti-de Sitter spacetimes can produce equal or better graph representations than curved Riemannian manifolds of higher dimensions.
Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.
Due to the significance and value in human-computer interaction and natural language processing, task-oriented dialog systems are attracting more and more attention in both academic and industrial communities. In this paper, we survey recent advances and challenges in an issue-specific manner. We discuss three critical topics for task-oriented dialog systems: (1) improving data efficiency to facilitate dialog system modeling in low-resource settings, (2) modeling multi-turn dynamics for dialog policy learning to achieve better task-completion performance, and (3) integrating domain ontology knowledge into the dialog model in both pipeline and end-to-end models. We also review the recent progresses in dialog evaluation and some widely-used corpora. We believe that this survey can shed a light on future research in task-oriented dialog systems.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.