Speech technology for communication, accessing information and services has rapidly improved in quality. It is convenient and appealing because speech is the primary mode of communication for humans. Such technology however also presents proven threats to privacy. Speech is a tool for communication and it will thus inherently contain private information. Importantly, it however also contains a wealth of side information, such as information related to health, emotions, affiliations, and relationships, all of which are private. Exposing such private information can lead to serious threats such as price gouging, harassment, extortion, and stalking. This paper is a tutorial on privacy issues related to speech technology, modeling their threats, approaches for protecting users' privacy, measuring the performance of privacy-protecting methods, perception of privacy as well as societal and legal consequences. In addition to a tutorial overview, it also presents lines for further development where improvements are most urgently needed.
In today's world, many technologically advanced countries have realized that real power lies not in physical strength but in educated minds. As a result, every country has embarked on restructuring its education system to meet the demands of technology. As a country in the midst of these developments, we cannot remain indifferent to this transformation in education. In the Information Age of the 21st century, rapid access to information is crucial for the development of individuals and societies. To take our place among the knowledge societies in a world moving rapidly towards globalization, we must closely follow technological innovations and meet the requirements of technology. This can be achieved by providing learning opportunities to anyone interested in acquiring education in their area of interest. This study focuses on the advantages and disadvantages of internet-based learning compared to traditional teaching methods, the importance of computer usage in internet-based learning, negative factors affecting internet-based learning, and the necessary recommendations for addressing these issues. In today's world, it is impossible to talk about education without technology or technology without education.
Mobile privacy and security can be a collaborative process where individuals seek advice and help from their trusted communities. To support such collective privacy and security management, we developed a mobile app for Community Oversight of Privacy and Security ("CO-oPS") that allows community members to review one another's apps installed and permissions granted to provide feedback. We conducted a four-week-long field study with 22 communities (101 participants) of friends, families, or co-workers who installed the CO-oPS app on their phones. Measures of transparency, trust, and awareness of one another's mobile privacy and security behaviors, along with individual and community participation in mobile privacy and security co-management, increased from pre- to post-study. Interview findings confirmed that the app features supported collective considerations of apps and permissions. However, participants expressed a range of concerns regarding having community members with different levels of technical expertise and knowledge regarding mobile privacy and security that can impact motivation to participate and perform oversight. Our study demonstrates the potential and challenges of community oversight mechanisms to support communities to co-manage mobile privacy and security.
The integration of permissioned blockchain such as Hyperledger fabric (HF) and Industrial internet of Things (IIoT) has opened new opportunities for interdependent supply chain partners to improve their performance through data sharing and coordination. The multichannel mechanism, private data collection and querying mechanism of HF enable private data sharing, transparency, traceability, and verification across the supply chain. However, the existing querying mechanism of HF needs further improvement for statistical data sharing because the query is evaluated on the original data recorded on the ledger. As a result, it gives rise to privacy issues such as leak of business secrets, tracking of resources and assets, and disclose of personal information. Therefore, we solve this problem by proposing a differentially private enhanced permissioned blockchain for private data sharing in the context of supply chain in IIoT which is known as (EDH-IIoT). We propose algorithms to efficiently utilize the $\epsilon$ through the reuse of the privacy budget for the repeated queries. Furthermore, the reuse and tracking of $\epsilon$ enable the data owner to get ensure that $\epsilon$ does not exceed the threshold which is the maximum privacy budget ($\epsilon_{t}$). Finally, we model two privacy attacks namely linking attack and composition attack to evaluate and compare privacy preservation, and the efficiency of reuse of {\epsilon} with the default chaincode of HF and traditional differential privacy model, respectively. The results confirm that EDH-IIoT obtains an accuracy of 97% in the shared data for $\epsilon_{t}$ = 1, and a reduction of 35.96% in spending of $\epsilon$.
Federated learning (FL) is a common and practical framework for learning a machine model in a decentralized fashion. A primary motivation behind this decentralized approach is data privacy, ensuring that the learner never sees the data of each local source itself. Federated learning then comes with two majors challenges: one is handling potentially complex model updates between a server and a large number of data sources; the other is that de-centralization may, in fact, be insufficient for privacy, as the local updates themselves can reveal information about the sources' data. To address these issues, we consider an approach to federated learning that combines quantization and differential privacy. Absent privacy, Federated Learning often relies on quantization to reduce communication complexity. We build upon this approach and develop a new algorithm called the \textbf{R}andomized \textbf{Q}uantization \textbf{M}echanism (RQM), which obtains privacy through a two-levels of randomization. More precisely, we randomly sub-sample feasible quantization levels, then employ a randomized rounding procedure using these sub-sampled discrete levels. We are able to establish that our results preserve ``Renyi differential privacy'' (Renyi DP). We empirically study the performance of our algorithm and demonstrate that compared to previous work it yields improved privacy-accuracy trade-offs for DP federated learning. To the best of our knowledge, this is the first study that solely relies on randomized quantization without incorporating explicit discrete noise to achieve Renyi DP guarantees in Federated Learning systems.
Repeated use of a data sample via adaptively chosen queries can rapidly lead to overfitting, wherein the empirical evaluation of queries on the sample significantly deviates from their mean with respect to the underlying data distribution. It turns out that simple noise addition algorithms suffice to prevent this issue, and differential privacy-based analysis of these algorithms shows that they can handle an asymptotically optimal number of queries. However, differential privacy's worst-case nature entails scaling such noise to the range of the queries even for highly-concentrated queries, or introducing more complex algorithms. In this paper, we prove that straightforward noise-addition algorithms already provide variance-dependent guarantees that also extend to unbounded queries. This improvement stems from a novel characterization that illuminates the core problem of adaptive data analysis. We show that the harm of adaptivity results from the covariance between the new query and a Bayes factor-based measure of how much information about the data sample was encoded in the responses given to past queries. We then leverage this characterization to introduce a new data-dependent stability notion that can bound this covariance.
Privacy policies disclose how an organization collects and handles personal information. Recent work has made progress in leveraging natural language processing (NLP) to automate privacy policy analysis and extract data collection statements from different sentences, considered in isolation from each other. In this paper, we view and analyze, for the first time, the entire text of a privacy policy in an integrated way. In terms of methodology: (1) we define PoliGraph, a type of knowledge graph that captures statements in a privacy policy as relations between different parts of the text; and (2) we develop an NLP-based tool, PoliGraph-er, to automatically extract PoliGraph from the text. In addition, (3) we revisit the notion of ontologies, previously defined in heuristic ways, to capture subsumption relations between terms. We make a clear distinction between local and global ontologies to capture the context of individual privacy policies, application domains, and privacy laws. Using a public dataset for evaluation, we show that PoliGraph-er identifies 40% more collection statements than prior state-of-the-art, with 97% precision. In terms of applications, PoliGraph enables automated analysis of a corpus of privacy policies and allows us to: (1) reveal common patterns in the texts across different privacy policies, and (2) assess the correctness of the terms as defined within a privacy policy. We also apply PoliGraph to: (3) detect contradictions in a privacy policy, where we show false alarms by prior work, and (4) analyze the consistency of privacy policies and network traffic, where we identify significantly more clear disclosures than prior work.
Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.
Games and simulators can be a valuable platform to execute complex multi-agent, multiplayer, imperfect information scenarios with significant parallels to military applications: multiple participants manage resources and make decisions that command assets to secure specific areas of a map or neutralize opposing forces. These characteristics have attracted the artificial intelligence (AI) community by supporting development of algorithms with complex benchmarks and the capability to rapidly iterate over new ideas. The success of artificial intelligence algorithms in real-time strategy games such as StarCraft II have also attracted the attention of the military research community aiming to explore similar techniques in military counterpart scenarios. Aiming to bridge the connection between games and military applications, this work discusses past and current efforts on how games and simulators, together with the artificial intelligence algorithms, have been adapted to simulate certain aspects of military missions and how they might impact the future battlefield. This paper also investigates how advances in virtual reality and visual augmentation systems open new possibilities in human interfaces with gaming platforms and their military parallels.
As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.
Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.