Multi-touch attribution (MTA) currently plays a pivotal role in achieving a fair estimation of the contributions of each advertising touchpoint to-wards conversion behavior, deeply influencing budget allocation and advertising recommenda-tion. Previous works attempted to eliminate the bias caused by user preferences to achieve the unbiased assumption of the conversion model. The multi-model collaboration method is not ef-ficient, and the complete elimination of user in-fluence also eliminates the causal effect of user features on conversion, resulting in limited per-formance of the conversion model. This paper re-defines the causal effect of user features on con-versions and proposes a novel end-to-end ap-proach, Deep Causal Representation for MTA (DCRMTA). Our model focuses on extracting causa features between conversions and users while eliminating confounding variables. Fur-thermore, extensive experiments demonstrate DCRMTA's superior performance in converting prediction across varying data distributions, while also effectively attributing value across dif-ferent advertising channels.
Semantic scene segmentation from a bird's-eye-view (BEV) perspective plays a crucial role in facilitating planning and decision-making for mobile robots. Although recent vision-only methods have demonstrated notable advancements in performance, they often struggle under adverse illumination conditions such as rain or nighttime. While active sensors offer a solution to this challenge, the prohibitively high cost of LiDARs remains a limiting factor. Fusing camera data with automotive radars poses a more inexpensive alternative but has received less attention in prior research. In this work, we aim to advance this promising avenue by introducing BEVCar, a novel approach for joint BEV object and map segmentation. The core novelty of our approach lies in first learning a point-based encoding of raw radar data, which is then leveraged to efficiently initialize the lifting of image features into the BEV space. We perform extensive experiments on the nuScenes dataset and demonstrate that BEVCar outperforms the current state of the art. Moreover, we show that incorporating radar information significantly enhances robustness in challenging environmental conditions and improves segmentation performance for distant objects. To foster future research, we provide the weather split of the nuScenes dataset used in our experiments, along with our code and trained models at //bevcar.cs.uni-freiburg.de.
Automatic optical inspection (AOI) plays a pivotal role in the manufacturing process, predominantly leveraging high-resolution imaging instruments for scanning purposes. It detects anomalies by analyzing image textures or patterns, making it an essential tool in industrial manufacturing and quality control. Despite its importance, the deployment of models for AOI often faces challenges. These include limited sample sizes, which hinder effective feature learning, variations among source domains, and sensitivities to changes in lighting and camera positions during imaging. These factors collectively compromise the accuracy of model predictions. Traditional AOI often fails to capitalize on the rich mechanism-parameter information from machines or inside images, including statistical parameters, which typically benefit AOI classification. To address this, we introduce an external modality-guided data mining framework, primarily rooted in optical character recognition (OCR), to extract statistical features from images as a second modality to enhance performance, termed OANet (Ocr-Aoi-Net). A key aspect of our approach is the alignment of external modality features, extracted using a single modality-aware model, with image features encoded by a convolutional neural network. This synergy enables a more refined fusion of semantic representations from different modalities. We further introduce feature refinement and a gating function in our OANet to optimize the combination of these features, enhancing inference and decision-making capabilities. Experimental outcomes show that our methodology considerably boosts the recall rate of the defect detection model and maintains high robustness even in challenging scenarios.
Humans demonstrate remarkable skill in transferring manipulation abilities across objects of varying shapes, poses, and appearances, a capability rooted in their understanding of semantic correspondences between different instances. To equip robots with a similar high-level comprehension, we present SparseDFF, a novel DFF for 3D scenes utilizing large 2D vision models to extract semantic features from sparse RGBD images, a domain where research is limited despite its relevance to many tasks with fixed-camera setups. SparseDFF generates view-consistent 3D DFFs, enabling efficient one-shot learning of dexterous manipulations by mapping image features to a 3D point cloud. Central to SparseDFF is a feature refinement network, optimized with a contrastive loss between views and a point-pruning mechanism for feature continuity. This facilitates the minimization of feature discrepancies w.r.t. end-effector parameters, bridging demonstrations and target manipulations. Validated in real-world scenarios with a dexterous hand, SparseDFF proves effective in manipulating both rigid and deformable objects, demonstrating significant generalization capabilities across object and scene variations.
Perception plays a crucial role in various robot applications. However, existing well-annotated datasets are biased towards autonomous driving scenarios, while unlabelled SLAM datasets are quickly over-fitted, and often lack environment and domain variations. To expand the frontier of these fields, we introduce a comprehensive dataset named MCD (Multi-Campus Dataset), featuring a wide range of sensing modalities, high-accuracy ground truth, and diverse challenging environments across three Eurasian university campuses. MCD comprises both CCS (Classical Cylindrical Spinning) and NRE (Non-Repetitive Epicyclic) lidars, high-quality IMUs (Inertial Measurement Units), cameras, and UWB (Ultra-WideBand) sensors. Furthermore, in a pioneering effort, we introduce semantic annotations of 29 classes over 59k sparse NRE lidar scans across three domains, thus providing a novel challenge to existing semantic segmentation research upon this largely unexplored lidar modality. Finally, we propose, for the first time to the best of our knowledge, continuous-time ground truth based on optimization-based registration of lidar-inertial data on large survey-grade prior maps, which are also publicly released, each several times the size of existing ones. We conduct a rigorous evaluation of numerous state-of-the-art algorithms on MCD, report their performance, and highlight the challenges awaiting solutions from the research community.
In precision agriculture, the detection and recognition of insects play an essential role in the ability of crops to grow healthy and produce a high-quality yield. The current machine vision model requires a large volume of data to achieve high performance. However, there are approximately 5.5 million different insect species in the world. None of the existing insect datasets can cover even a fraction of them due to varying geographic locations and acquisition costs. In this paper, we introduce a novel "Insect-1M" dataset, a game-changing resource poised to revolutionize insect-related foundation model training. Covering a vast spectrum of insect species, our dataset, including 1 million images with dense identification labels of taxonomy hierarchy and insect descriptions, offers a panoramic view of entomology, enabling foundation models to comprehend visual and semantic information about insects like never before. Then, to efficiently establish an Insect Foundation Model, we develop a micro-feature self-supervised learning method with a Patch-wise Relevant Attention mechanism capable of discerning the subtle differences among insect images. In addition, we introduce Description Consistency loss to improve micro-feature modeling via insect descriptions. Through our experiments, we illustrate the effectiveness of our proposed approach in insect modeling and achieve State-of-the-Art performance on standard benchmarks of insect-related tasks. Our Insect Foundation Model and Dataset promise to empower the next generation of insect-related vision models, bringing them closer to the ultimate goal of precision agriculture.
Video-text Large Language Models (video-text LLMs) have shown remarkable performance in answering questions and holding conversations on simple videos. However, they perform almost the same as random on grounding text queries in long and complicated videos, having little ability to understand and reason about temporal information, which is the most fundamental difference between videos and images. In this paper, we propose HawkEye, one of the first video-text LLMs that can perform temporal video grounding in a fully text-to-text manner. To collect training data that is applicable for temporal video grounding, we construct InternVid-G, a large-scale video-text corpus with segment-level captions and negative spans, with which we introduce two new time-aware training objectives to video-text LLMs. We also propose a coarse-grained method of representing segments in videos, which is more robust and easier for LLMs to learn and follow than other alternatives. Extensive experiments show that HawkEye is better at temporal video grounding and comparable on other video-text tasks with existing video-text LLMs, which verifies its superior video-text multi-modal understanding abilities.
Vision-based occupancy prediction, also known as 3D Semantic Scene Completion (SSC), presents a significant challenge in computer vision. Previous methods, confined to onboard processing, struggle with simultaneous geometric and semantic estimation, continuity across varying viewpoints, and single-view occlusion. Our paper introduces OccFiner, a novel offboard framework designed to enhance the accuracy of vision-based occupancy predictions. OccFiner operates in two hybrid phases: 1) a multi-to-multi local propagation network that implicitly aligns and processes multiple local frames for correcting onboard model errors and consistently enhancing occupancy accuracy across all distances. 2) the region-centric global propagation, focuses on refining labels using explicit multi-view geometry and integrating sensor bias, especially to increase the accuracy of distant occupied voxels. Extensive experiments demonstrate that OccFiner improves both geometric and semantic accuracy across various types of coarse occupancy, setting a new state-of-the-art performance on the SemanticKITTI dataset. Notably, OccFiner elevates vision-based SSC models to a level even surpassing that of LiDAR-based onboard SSC models.
Despite the success in 6D pose estimation in bin-picking scenarios, existing methods still struggle to produce accurate prediction results for symmetry objects and real world scenarios. The primary bottlenecks include 1) the ambiguity keypoints caused by object symmetries; 2) the domain gap between real and synthetic data. To circumvent these problem, we propose a new 6D pose estimation network with symmetric-aware keypoint prediction and self-training domain adaptation (SD-Net). SD-Net builds on pointwise keypoint regression and deep hough voting to perform reliable detection keypoint under clutter and occlusion. Specifically, at the keypoint prediction stage, we designe a robust 3D keypoints selection strategy considering the symmetry class of objects and equivalent keypoints, which facilitate locating 3D keypoints even in highly occluded scenes. Additionally, we build an effective filtering algorithm on predicted keypoint to dynamically eliminate multiple ambiguity and outlier keypoint candidates. At the domain adaptation stage, we propose the self-training framework using a student-teacher training scheme. To carefully distinguish reliable predictions, we harnesses a tailored heuristics for 3D geometry pseudo labelling based on semi-chamfer distance. On public Sil'eane dataset, SD-Net achieves state-of-the-art results, obtaining an average precision of 96%. Testing learning and generalization abilities on public Parametric datasets, SD-Net is 8% higher than the state-of-the-art method. The code is available at //github.com/dingthuang/SD-Net.
Information retrieval is a rapidly evolving field. However it still faces significant limitations in the scientific and industrial vast amounts of information, such as semantic divergence and vocabulary gaps in sparse retrieval, low precision and lack of interpretability in semantic search, or hallucination and outdated information in generative models. In this paper, we introduce a two-block approach to tackle these hurdles for long documents. The first block enhances language understanding in sparse retrieval by query expansion to retrieve relevant documents. The second block deepens the result by providing comprehensive and informative answers to the complex question using only the information spread in the long document, enabling bidirectional engagement. At various stages of the pipeline, intermediate results are presented to users to facilitate understanding of the system's reasoning. We believe this bidirectional approach brings significant advancements in terms of transparency, logical thinking, and comprehensive understanding in the field of scientific information retrieval.
Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.