亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The recent advancements in machine learning have motivated researchers to generate classification models dealing with hundreds of classes such as in the case of image datasets. However, visualization of classification models with high number of classes and inter-model comparison in such classification problems are two areas that have not received much attention in the literature, despite the ever-increasing use of classification models to address problems with very large class categories. In this paper, we present our interactive visual analytics tool, called Circles, that allows a visual inter-model comparison of numerous classification models with 1K classes in one view. To mitigate the tricky issue of visual clutter, we chose concentric a radial line layout for our inter-model comparison task. Our prototype shows the results of 9 models with 1K classes

相關內容

Concept bottleneck models have been successfully used for explainable machine learning by encoding information within the model with a set of human-defined concepts. In the context of human-assisted or autonomous driving, explainability models can help user acceptance and understanding of decisions made by the autonomous vehicle, which can be used to rationalize and explain driver or vehicle behavior. We propose a new approach using concept bottlenecks as visual features for control command predictions and explanations of user and vehicle behavior. We learn a human-understandable concept layer that we use to explain sequential driving scenes while learning vehicle control commands. This approach can then be used to determine whether a change in a preferred gap or steering commands from a human (or autonomous vehicle) is led by an external stimulus or change in preferences. We achieve competitive performance to latent visual features while gaining interpretability within our model setup.

In applying reinforcement learning (RL) to high-stakes domains, quantitative and qualitative evaluation using observational data can help practitioners understand the generalization performance of new policies. However, this type of off-policy evaluation (OPE) is inherently limited since offline data may not reflect the distribution shifts resulting from the application of new policies. On the other hand, online evaluation by collecting rollouts according to the new policy is often infeasible, as deploying new policies in these domains can be unsafe. In this work, we propose a semi-offline evaluation framework as an intermediate step between offline and online evaluation, where human users provide annotations of unobserved counterfactual trajectories. While tempting to simply augment existing data with such annotations, we show that this naive approach can lead to biased results. Instead, we design a new family of OPE estimators based on importance sampling (IS) and a novel weighting scheme that incorporate counterfactual annotations without introducing additional bias. We analyze the theoretical properties of our approach, showing its potential to reduce both bias and variance compared to standard IS estimators. Our analyses reveal important practical considerations for handling biased, noisy, or missing annotations. In a series of proof-of-concept experiments involving bandits and a healthcare-inspired simulator, we demonstrate that our approach outperforms purely offline IS estimators and is robust to imperfect annotations. Our framework, combined with principled human-centered design of annotation solicitation, can enable the application of RL in high-stakes domains.

Flexible models for probability distributions are an essential ingredient in many machine learning tasks. We develop and investigate a new class of probability distributions, which we call a Squared Neural Family (SNEFY), formed by squaring the 2-norm of a neural network and normalising it with respect to a base measure. Following the reasoning similar to the well established connections between infinitely wide neural networks and Gaussian processes, we show that SNEFYs admit closed form normalising constants in many cases of interest, thereby resulting in flexible yet fully tractable density models. SNEFYs strictly generalise classical exponential families, are closed under conditioning, and have tractable marginal distributions. Their utility is illustrated on a variety of density estimation, conditional density estimation, and density estimation with missing data tasks.

Concept bottleneck models have been successfully used for explainable machine learning by encoding information within the model with a set of human-defined concepts. In the context of human-assisted or autonomous driving, explainability models can help user acceptance and understanding of decisions made by the autonomous vehicle, which can be used to rationalize and explain driver or vehicle behavior. We propose a new approach using concept bottlenecks as visual features for control command predictions and explanations of user and vehicle behavior. We learn a human-understandable concept layer that we use to explain sequential driving scenes while learning vehicle control commands. This approach can then be used to determine whether a change in a preferred gap or steering commands from a human (or autonomous vehicle) is led by an external stimulus or change in preferences. We achieve competitive performance to latent visual features while gaining interpretability within our model setup.

The performance of machine learning models depends on the quality of the underlying data. Malicious actors can attack the model by poisoning the training data. Current detectors are tied to either specific data types, models, or attacks, and therefore have limited applicability in real-world scenarios. This paper presents a novel fully-agnostic framework, DIVA (Detecting InVisible Attacks), that detects attacks solely relying on analyzing the potentially poisoned data set. DIVA is based on the idea that poisoning attacks can be detected by comparing the classifier's accuracy on poisoned and clean data and pre-trains a meta-learner using Complexity Measures to estimate the otherwise unknown accuracy on a hypothetical clean dataset. The framework applies to generic poisoning attacks. For evaluation purposes, in this paper, we test DIVA on label-flipping attacks.

While deep learning models have achieved remarkable success across a range of medical image analysis tasks, deployment of these models in real clinical contexts requires that they be robust to variability in the acquired images. While many methods apply predefined transformations to augment the training data to enhance test-time robustness, these transformations may not ensure the model's robustness to the diverse variability seen in patient images. In this paper, we introduce a novel three-stage approach based on transformers coupled with conditional diffusion models, with the goal of improving model robustness to the kinds of imaging variability commonly encountered in practice without the need for pre-determined data augmentation strategies. To this end, multiple image encoders first learn hierarchical feature representations to build discriminative latent spaces. Next, a reverse diffusion process, guided by the latent code, acts on an informative prior and proposes prediction candidates in a generative manner. Finally, several prediction candidates are aggregated in a bi-level aggregation protocol to produce the final output. Through extensive experiments on medical imaging benchmark datasets, we show that our method improves upon state-of-the-art methods in terms of robustness and confidence calibration. Additionally, we introduce a strategy to quantify the prediction uncertainty at the instance level, increasing their trustworthiness to clinicians using them in clinical practice.

As the complexity of machine learning (ML) models increases and their application in different (and critical) domains grows, there is a strong demand for more interpretable and trustworthy ML. A direct, model-agnostic, way to interpret such models is to train surrogate models, such as rule sets and decision trees, that sufficiently approximate the original ones while being simpler and easier-to-explain. Yet, rule sets can become very lengthy, with many if-else statements, and decision tree depth grows rapidly when accurately emulating complex ML models. In such cases, both approaches can fail to meet their core goal, providing users with model interpretability. To tackle this, we propose DeforestVis, a visual analytics tool that offers user-friendly summarization of the behavior of complex ML models by providing surrogate decision stumps (one-level decision trees) generated with the adaptive boosting (AdaBoost) technique. DeforestVis helps users to explore the complexity vs fidelity trade-off by incrementally generating more stumps, creating attribute-based explanations with weighted stumps to justify decision making, and analyzing the impact of rule overriding on training instance allocation between one or more stumps. An independent test set allows users to monitor the effectiveness of manual rule changes and form hypotheses based on case-by-case analyses. We show the applicability and usefulness of DeforestVis with two use cases and expert interviews with data analysts and model developers.

Recent advances of data-driven machine learning have revolutionized fields like computer vision, reinforcement learning, and many scientific and engineering domains. In many real-world and scientific problems, systems that generate data are governed by physical laws. Recent work shows that it provides potential benefits for machine learning models by incorporating the physical prior and collected data, which makes the intersection of machine learning and physics become a prevailing paradigm. In this survey, we present this learning paradigm called Physics-Informed Machine Learning (PIML) which is to build a model that leverages empirical data and available physical prior knowledge to improve performance on a set of tasks that involve a physical mechanism. We systematically review the recent development of physics-informed machine learning from three perspectives of machine learning tasks, representation of physical prior, and methods for incorporating physical prior. We also propose several important open research problems based on the current trends in the field. We argue that encoding different forms of physical prior into model architectures, optimizers, inference algorithms, and significant domain-specific applications like inverse engineering design and robotic control is far from fully being explored in the field of physics-informed machine learning. We believe that this study will encourage researchers in the machine learning community to actively participate in the interdisciplinary research of physics-informed machine learning.

In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.

The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often refereed to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of hitherto attempts at handling uncertainty in general and formalizing this distinction in particular.

北京阿比特科技有限公司