Split conformal prediction techniques are applied to regression problems with circular responses by introducing a suitable conformity score, leading to prediction sets with adaptive arc length and finite-sample coverage guarantees for any circular predictive model under exchangeable data. Leveraging the high performance of existing predictive models designed for linear responses, we analyze a general projection procedure that converts any linear response regression model into one suitable for circular responses. When random forests serve as basis models in this projection procedure, we harness the out-of-bag dynamics to eliminate the necessity for a separate calibration sample in the construction of prediction sets. For synthetic and real datasets the resulting projected random forests model produces more efficient out-of-bag conformal prediction sets, with shorter median arc length, when compared to the split conformal prediction sets generated by two existing alternative models.
Regularization is a critical technique for ensuring well-posedness in solving inverse problems with incomplete measurement data. Traditionally, the regularization term is designed based on prior knowledge of the unknown signal's characteristics, such as sparsity or smoothness. Inhomogeneous regularization, which incorporates a spatially varying exponent $p$ in the standard $\ell_p$-norm-based framework, has been used to recover signals with spatially varying features. This study introduces weighted inhomogeneous regularization, an extension of the standard approach incorporating a novel exponent design and spatially varying weights. The proposed exponent design mitigates misclassification when distinct characteristics are spatially close, while the weights address challenges in recovering regions with small-scale features that are inadequately captured by traditional $\ell_p$-norm regularization. Numerical experiments, including synthetic image reconstruction and the recovery of sea ice data from incomplete wave measurements, demonstrate the effectiveness of the proposed method.
An injective colouring of a graph is a colouring in which every two vertices sharing a common neighbour receive a different colour. Chen, Hahn, Raspaud and Wang conjectured that every planar graph of maximum degree $\Delta \ge 3$ admits an injective colouring with at most $\lfloor 3\Delta/2\rfloor$ colours. This was later disproved by Lu\v{z}ar and \v{S}krekovski for certain small and even values of $\Delta$ and they proposed a new refined conjecture. Using an algorithm for determining the injective chromatic number of a graph, i.e. the smallest number of colours for which the graph admits an injective colouring, we give computational evidence for Lu\v{z}ar and \v{S}krekovski's conjecture and extend their results by presenting an infinite family of $3$-connected planar graphs for each $\Delta$ (except for $4$) attaining their bound, whereas they only gave a finite amount of examples for each $\Delta$. Hence, together with another infinite family of maximum degree $4$, we provide infinitely many counterexamples to the conjecture by Chen et al. for each $\Delta$ if $4\le \Delta \le 7$ and every even $\Delta \ge 8$. We provide similar evidence for analogous conjectures by La and \v{S}torgel and Lu\v{z}ar, \v{S}krekovski and Tancer when the girth is restricted as well. Also in these cases we provide infinite families of $3$-connected planar graphs attaining the bounds of these conjectures for certain maximum degrees $\Delta\geq 3$.
Approximating field variables and data vectors from sparse samples is a key challenge in computational science. Widely used methods such as gappy proper orthogonal decomposition and empirical interpolation rely on linear approximation spaces, limiting their effectiveness for data representing transport-dominated and wave-like dynamics. To address this limitation, we introduce quadratic manifold sparse regression, which trains quadratic manifolds with a sparse greedy method and computes approximations on the manifold through novel nonlinear projections of sparse samples. The nonlinear approximations obtained with quadratic manifold sparse regression achieve orders of magnitude higher accuracies than linear methods on data describing transport-dominated dynamics in numerical experiments.
The goal of uplift modeling is to recommend actions that optimize specific outcomes by determining which entities should receive treatment. One common approach involves two steps: first, an inference step that estimates conditional average treatment effects (CATEs), and second, an optimization step that ranks entities based on their CATE values and assigns treatment to the top k within a given budget. While uplift modeling typically focuses on binary treatments, many real-world applications are characterized by continuous-valued treatments, i.e., a treatment dose. This paper presents a predict-then-optimize framework to allow for continuous treatments in uplift modeling. First, in the inference step, conditional average dose responses (CADRs) are estimated from data using causal machine learning techniques. Second, in the optimization step, we frame the assignment task of continuous treatments as a dose-allocation problem and solve it using integer linear programming (ILP). This approach allows decision-makers to efficiently and effectively allocate treatment doses while balancing resource availability, with the possibility of adding extra constraints like fairness considerations or adapting the objective function to take into account instance-dependent costs and benefits to maximize utility. The experiments compare several CADR estimators and illustrate the trade-offs between policy value and fairness, as well as the impact of an adapted objective function. This showcases the framework's advantages and flexibility across diverse applications in healthcare, lending, and human resource management. All code is available on github.com/SimonDeVos/UMCT.
The coherent systems are basic concepts in reliability theory and survival analysis. They contain as particular cases the popular series, parallel and $k$-ou-of-$n$ systems (order statistics). Many results have been obtained for them by assuming that the component lifetimes are independent. In many practical cases, this assumption is unrealistic. In this paper we study them by assuming a Time Transformed Exponential (TTE) model for the joint distribution of the component lifetimes. This model is equivalent to the frailty model which assumes that they are conditionally independent given a common risk parameter (which represents the common environment risk). Under this model, we obtain explicit expressions for the system reliability functions and comparison results for the main stochastic orders. The system residual lifetime (under different assumptions) is studied as well.
Two sequential estimators are proposed for the odds p/(1-p) and log odds log(p/(1-p)) respectively, using independent Bernoulli random variables with parameter p as inputs. The estimators are unbiased, and guarantee that the variance of the estimation error divided by the true value of the odds, or the variance of the estimation error of the log odds, are less than a target value for any p in (0,1). The estimators are close to optimal in the sense of Wolfowitz's bound.
An extremely schematic model of the forces acting an a sailing yacht equipped with a system of foils is here presented and discussed. The role of the foils is to raise the hull from the water in order to reduce the total resistance and then increase the speed. Some CFD simulations are providing the total resistance of the bare hull at some values of speed and displacement, as well as the characteristics (drag and lift coefficients) of the 2D foil sections used for the appendages. A parametric study has been performed for the characterization of a foil of finite dimensions. The equilibrium of the vertical forces and longitudinal moments, as well as a reduced displacement, is obtained by controlling the pitch angle of the foils. The value of the total resistance of the yacht with foils is then compared with the case without foils, evidencing the speed regime where an advantage is obtained, if any.
Many optimization problems require hyperparameters, i.e., parameters that must be pre-specified in advance, such as regularization parameters and parametric regularizers in variational regularization methods for inverse problems, and dictionaries in compressed sensing. A data-driven approach to determine appropriate hyperparameter values is via a nested optimization framework known as bilevel learning. Even when it is possible to employ a gradient-based solver to the bilevel optimization problem, construction of the gradients, known as hypergradients, is computationally challenging, each one requiring both a solution of a minimization problem and a linear system solve. These systems do not change much during the iterations, which motivates us to apply recycling Krylov subspace methods, wherein information from one linear system solve is re-used to solve the next linear system. Existing recycling strategies often employ eigenvector approximations called Ritz vectors. In this work we propose a novel recycling strategy based on a new concept, Ritz generalized singular vectors, which acknowledge the bilevel setting. Additionally, while existing iterative methods primarily terminate according to the residual norm, this new concept allows us to define a new stopping criterion that directly approximates the error of the associated hypergradient. The proposed approach is validated through extensive numerical testing in the context of an inverse problem in imaging.
This manuscript describes the notions of blocker and interdiction applied to well-known optimization problems. The main interest of these two concepts is the capability to analyze the existence of a combinatorial structure after some modifications. We focus on graph modification, like removing vertices or links in a network. In the interdiction version, we have a budget for modification to reduce as much as possible the size of a given combinatorial structure. Whereas, for the blocker version, we minimize the number of modifications such that the network does not contain a given combinatorial structure. Blocker and interdiction problems have some similarities and can be applied to well-known optimization problems. We consider matching, connectivity, shortest path, max flow, and clique problems. For these problems, we analyze either the blocker version or the interdiction one. Applying the concept of blocker or interdiction to well-known optimization problems can change their complexities. Some optimization problems become harder when one of these two notions is applied. For this reason, we propose some complexity analysis to show when an optimization problem, or the associated decision problem, becomes harder. Another fundamental aspect developed in the manuscript is the use of exact methods to tackle these optimization problems. The main way to solve these problems is to use integer linear programming to model them. An interesting aspect of integer linear programming is the possibility to analyze theoretically the strength of these models, using cutting planes. For most of the problems studied in this manuscript, a polyhedral analysis is performed to prove the strength of inequalities or describe new families of inequalities. The exact algorithms proposed are based on Branch-and-Cut or Branch-and-Price algorithm, where dedicated separation and pricing algorithms are proposed.
We consider the vorticity formulation of the Euler equations describing the flow of a two-dimensional incompressible ideal fluid on the sphere. Zeitlin's model provides a finite-dimensional approximation of the vorticity formulation that preserves the underlying geometric structure: it consists of an isospectral Lie--Poisson flow on the Lie algebra of skew-Hermitian matrices. We propose an approximation of Zeitlin's model based on a time-dependent low-rank factorization of the vorticity matrix and evolve a basis of eigenvectors according to the Euler equations. In particular, we show that the approximate flow remains isospectral and Lie--Poisson and that the error in the solution, in the approximation of the Hamiltonian and of the Casimir functions only depends on the approximation of the vorticity matrix at the initial time. The computational complexity of solving the approximate model is shown to scale quadratically with the order of the vorticity matrix and linearly if a further approximation of the stream function is introduced.