亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep learning has been highly successful in some applications. Nevertheless, its use for solving partial differential equations (PDEs) has only been of recent interest with current state-of-the-art machine learning libraries, e.g., TensorFlow or PyTorch. Physics-informed neural networks (PINNs) are an attractive tool for solving partial differential equations based on sparse and noisy data. Here extend PINNs to solve obstacle-related PDEs which present a great computational challenge because they necessitate numerical methods that can yield an accurate approximation of the solution that lies above a given obstacle. The performance of the proposed PINNs is demonstrated in multiple scenarios for linear and nonlinear PDEs subject to regular and irregular obstacles.

相關內容

神經網絡(Neural Networks)是世界上三個最古老的神經建模學會的檔案期刊:國際神經網絡學會(INNS)、歐洲神經網絡學會(ENNS)和日本神經網絡學會(JNNS)。神經網絡提供了一個論壇,以發展和培育一個國際社會的學者和實踐者感興趣的所有方面的神經網絡和相關方法的計算智能。神經網絡歡迎高質量論文的提交,有助于全面的神經網絡研究,從行為和大腦建模,學習算法,通過數學和計算分析,系統的工程和技術應用,大量使用神經網絡的概念和技術。這一獨特而廣泛的范圍促進了生物和技術研究之間的思想交流,并有助于促進對生物啟發的計算智能感興趣的跨學科社區的發展。因此,神經網絡編委會代表的專家領域包括心理學,神經生物學,計算機科學,工程,數學,物理。該雜志發表文章、信件和評論以及給編輯的信件、社論、時事、軟件調查和專利信息。文章發表在五個部分之一:認知科學,神經科學,學習系統,數學和計算分析、工程和應用。 官網地址:

A finite element method is introduced to track interface evolution governed by the level set equation. The method solves for the level set indicator function in a narrow band around the interface. An extension procedure, which is essential for a narrow band level set method, is introduced based on a finite element $L^2$- or $H^1$-projection combined with the ghost-penalty method. This procedure is formulated as a linear variational problem in a narrow band around the surface, making it computationally efficient and suitable for rigorous error analysis. The extension method is combined with a discontinuous Galerkin space discretization and a BDF time-stepping scheme. The paper analyzes the stability and accuracy of the extension procedure and evaluates the performance of the resulting narrow band finite element method for the level set equation through numerical experiments.

Stable distributions are a celebrated class of probability laws used in various fields. The $\alpha$-stable process, and its exponentially tempered counterpart, the Classical Tempered Stable (CTS) process, are also prominent examples of L\'evy processes. Simulating these processes is critical for many applications, yet it remains computationally challenging, due to their infinite jump activity. This survey provides an overview of the key properties of these objects offering a roadmap for practitioners. The first part is a review of the stability property, sampling algorithms are provided along with numerical illustrations. Then CTS processes are presented, with the Baeumer-Meerschaert algorithm for increment simulation, and a computational analysis is provided with numerical illustrations across different time scales.

We consider linear second order differential equation y''= f with zero Dirichlet boundary conditions. At the continuous level this problem is solvable using the Green function, and this technique has a counterpart on the discrete level. The discrete solution is represented via an application of a matrix -- the Green matrix -- to the discretised right-hand side, and we propose an algorithm for fast construction of the Green matrix. In particular, we discretise the original problem using the spectral collocation method based on the Chebyshev--Gauss--Lobatto points, and using the discrete cosine transformation we show that the corresponding Green matrix is fast to construct even for large number of collocation points/high polynomial degree. Furthermore, we show that the action of the discrete solution operator (Green matrix) to the corresponding right-hand side can be implemented in a matrix-free fashion.

We develop and analyze stochastic inexact Gauss-Newton methods for nonlinear least-squares problems and for nonlinear systems ofequations. Random models are formed using suitable sampling strategies for the matrices involved in the deterministic models. The analysis of the expected number of iterations needed in the worst case to achieve a desired level of accuracy in the first-order optimality condition provides guidelines for applying sampling and enforcing, with \minor{a} fixed probability, a suitable accuracy in the random approximations. Results of the numerical validation of the algorithms are presented.

Time-dependent kinetic models are ubiquitous in computational science and engineering. The underlying integro-differential equations in these models are high-dimensional, comprised of a six--dimensional phase space, making simulations of such phenomena extremely expensive. In this article we demonstrate that in many situations, the solution to kinetics problems lives on a low dimensional manifold that can be described by a low-rank matrix or tensor approximation. We then review the recent development of so-called low-rank methods that evolve the solution on this manifold. The two classes of methods we review are the dynamical low-rank (DLR) method, which derives differential equations for the low-rank factors, and a Step-and-Truncate (SAT) approach, which projects the solution onto the low-rank representation after each time step. Thorough discussions of time integrators, tensor decompositions, and method properties such as structure preservation and computational efficiency are included. We further show examples of low-rank methods as applied to particle transport and plasma dynamics.

We consider the problem of estimating the error when solving a system of differential algebraic equations. Richardson extrapolation is a classical technique that can be used to judge when computational errors are irrelevant and estimate the discretization error. We have simulated molecular dynamics with constraints using the GROMACS library and found that the output is not always amenable to Richardson extrapolation. We derive and illustrate Richardson extrapolation using a variety of numerical experiments. We identify two necessary conditions that are not always satisfied by the GROMACS library.

Many articles have recently been devoted to Mahler equations, partly because of their links with other branches of mathematics such as automata theory. Hahn series (a generalization of the Puiseux series allowing arbitrary exponents of the indeterminate as long as the set that supports them is well-ordered) play a central role in the theory of Mahler equations. In this paper, we address the following fundamental question: is there an algorithm to calculate the Hahn series solutions of a given linear Mahler equation? What makes this question interesting is the fact that the Hahn series appearing in this context can have complicated supports with infinitely many accumulation points. Our (positive) answer to the above question involves among other things the construction of a computable well-ordered receptacle for the supports of the potential Hahn series solutions.

This work is concerned with the computation of the first-order variation for one-dimensional hyperbolic partial differential equations. In the case of shock waves the main challenge is addressed by developing a numerical method to compute the evolution of the generalized tangent vector introduced by Bressan and Marson (1995). Our basic strategy is to combine the conservative numerical schemes and a novel expression of the interface conditions for the tangent vectors along the discontinuity. Based on this, we propose a simple numerical method to compute the tangent vectors for general hyperbolic systems. Numerical results are presented for Burgers' equation and a 2 x 2 hyperbolic system with two genuinely nonlinear fields.

Quantum computing has emerged as a promising avenue for achieving significant speedup, particularly in large-scale PDE simulations, compared to classical computing. One of the main quantum approaches involves utilizing Hamiltonian simulation, which is directly applicable only to Schr\"odinger-type equations. To address this limitation, Schr\"odingerisation techniques have been developed, employing the warped transformation to convert general linear PDEs into Schr\"odinger-type equations. However, despite the development of Schr\"odingerisation techniques, the explicit implementation of the corresponding quantum circuit for solving general PDEs remains to be designed. In this paper, we present detailed implementation of a quantum algorithm for general PDEs using Schr\"odingerisation techniques. We provide examples of the heat equation, and the advection equation approximated by the upwind scheme, to demonstrate the effectiveness of our approach. Complexity analysis is also carried out to demonstrate the quantum advantages of these algorithms in high dimensions over their classical counterparts.

The elapsed time equation is an age-structured model that describes the dynamics of interconnected spiking neurons through the elapsed time since the last discharge, leading to many interesting questions on the evolution of the system from a mathematical and biological point of view. In this work, we first deal with the case when transmission after a spike is instantaneous and the case when there exists a distributed delay that depends on the previous history of the system, which is a more realistic assumption. Then we revisit the well-posedness in order to make a numerical analysis by adapting the classical upwind scheme through a fixed-point approach. We improve the previous results on well-posedness by relaxing some hypotheses on the non-linearity for instantaneous transmission, including the strongly excitatory case, while for the numerical analysis we prove that the approximation given by the explicit upwind scheme converges to the solution of the non-linear problem through BV-estimates. We also show some numerical simulations to compare the behavior of the system in the case of instantaneous transmission with the case of distributed delay under different parameters, leading to solutions with different asymptotic profiles.

北京阿比特科技有限公司