A key promise of democratic voting is that, by accounting for all constituents' preferences, it produces decisions that benefit the constituency overall. It is alarming, then, that all deterministic voting rules have unbounded distortion: all such rules - even under reasonable conditions - will sometimes select outcomes that yield essentially no value for constituents. In this paper, we show that this problem is mitigated by voters being public-spirited: that is, when deciding how to rank alternatives, voters weigh the common good in addition to their own interests. We first generalize the standard voting model to capture this public-spirited voting behavior. In this model, we show that public-spirited voting can substantially - and in some senses, monotonically - reduce the distortion of several voting rules. Notably, these results include the finding that if voters are at all public-spirited, some voting rules have constant distortion in the number of alternatives. Further, we demonstrate that these benefits are robust to adversarial conditions likely to exist in practice. Taken together, our results suggest an implementable approach to improving the welfare outcomes of elections: democratic deliberation, an already-mainstream practice that is believed to increase voters' public spirit.
For any two point sets $A,B \subset \mathbb{R}^d$ of size up to $n$, the Chamfer distance from $A$ to $B$ is defined as $\text{CH}(A,B)=\sum_{a \in A} \min_{b \in B} d_X(a,b)$, where $d_X$ is the underlying distance measure (e.g., the Euclidean or Manhattan distance). The Chamfer distance is a popular measure of dissimilarity between point clouds, used in many machine learning, computer vision, and graphics applications, and admits a straightforward $O(d n^2)$-time brute force algorithm. Further, the Chamfer distance is often used as a proxy for the more computationally demanding Earth-Mover (Optimal Transport) Distance. However, the \emph{quadratic} dependence on $n$ in the running time makes the naive approach intractable for large datasets. We overcome this bottleneck and present the first $(1+\epsilon)$-approximate algorithm for estimating the Chamfer distance with a near-linear running time. Specifically, our algorithm runs in time $O(nd \log (n)/\varepsilon^2)$ and is implementable. Our experiments demonstrate that it is both accurate and fast on large high-dimensional datasets. We believe that our algorithm will open new avenues for analyzing large high-dimensional point clouds. We also give evidence that if the goal is to \emph{report} a $(1+\varepsilon)$-approximate mapping from $A$ to $B$ (as opposed to just its value), then any sub-quadratic time algorithm is unlikely to exist.
We investigate one of the most basic problems in streaming algorithms: approximating the number of elements in the stream. In 1978, Morris famously gave a randomized algorithm achieving a constant-factor approximation error for streams of length at most N in space $O(\log \log N)$. We investigate the pseudo-deterministic complexity of the problem and prove a tight $\Omega(\log N)$ lower bound, thus resolving a problem of Goldwasser-Grossman-Mohanty-Woodruff.
Observational studies are frequently used to estimate the effect of an exposure or treatment on an outcome. To obtain an unbiased estimate of the treatment effect, it is crucial to measure the exposure accurately. A common type of exposure misclassification is recall bias, which occurs in retrospective cohort studies when study subjects may inaccurately recall their past exposure. Specifically, differential recall bias can be problematic when examining the effect of a self-reported binary exposure since the magnitude of recall bias can differ between groups. In this paper, we provide the following contributions: 1) we derive bounds for the average treatment effect (ATE) in the presence of recall bias; 2) we develop several estimation approaches under different identification strategies; 3) we conduct simulation studies to evaluate their performance under several scenarios of model misspecification; 4) we propose a sensitivity analysis method that can examine the robustness of our results with respect to different assumptions; and 5) we apply the proposed framework to an observational study, estimating the effect of childhood physical abuse on adulthood mental health.
To improve the convergence property of the randomized Kaczmarz (RK) method for solving linear systems, Bai and Wu (SIAM J. Sci. Comput., 40(1):A592--A606, 2018) originally introduced a greedy probability criterion for effectively selecting the working row from the coefficient matrix and constructed the greedy randomized Kaczmarz (GRK) method. Due to its simplicity and efficiency, this approach has inspired numerous subsequent works in recent years, such as the capped adaptive sampling rule, the greedy augmented randomized Kaczmarz method, and the greedy randomized coordinate descent method. Since the iterates of the GRK method are actually random variables, existing convergence analyses are all related to the expectation of the error. In this note, we prove that the linear convergence rate of the GRK method is deterministic, i.e. not in the sense of expectation. Moreover, the Polyak's heavy ball momentum technique is incorporated to improve the performance of the GRK method. We propose a refined convergence analysis, compared with the technique used in Loizou and Richt\'{a}rik (Comput. Optim. Appl., 77(3):653--710, 2020), of momentum variants of randomized iterative methods, which shows that the proposed GRK method with momentum (mGRK) also enjoys a deterministic linear convergence. Numerical experiments show that the mGRK method is more efficient than the GRK method.
Probability density estimation is a core problem of statistics and signal processing. Moment methods are an important means of density estimation, but they are generally strongly dependent on the choice of feasible functions, which severely affects the performance. In this paper, we propose a non-classical parametrization for density estimation using sample moments, which does not require the choice of such functions. The parametrization is induced by the squared Hellinger distance, and the solution of it, which is proved to exist and be unique subject to a simple prior that does not depend on data, and can be obtained by convex optimization. Statistical properties of the density estimator, together with an asymptotic error upper bound are proposed for the estimator by power moments. Applications of the proposed density estimator in signal processing tasks are given. Simulation results validate the performance of the estimator by a comparison to several prevailing methods. To the best of our knowledge, the proposed estimator is the first one in the literature for which the power moments up to an arbitrary even order exactly match the sample moments, while the true density is not assumed to fall within specific function classes.
The theory of rapid mixing random walks plays a fundamental role in the study of modern randomised algorithms. Usually, the mixing time is measured with respect to the worst initial position. It is well known that the presence of bottlenecks in a graph hampers mixing and, in particular, starting inside a small bottleneck significantly slows down the diffusion of the walk in the first steps of the process. To circumvent this problem, the average mixing time is defined to be the mixing time starting at a uniformly random vertex. In this paper we provide a general framework to show logarithmic average mixing time for random walks on graphs with small bottlenecks. The framework is especially effective on certain families of random graphs with heterogeneous properties. We demonstrate its applicability on two random models for which the mixing time was known to be of order $\log^2n$, speeding up the mixing to order $\log n$. First, in the context of smoothed analysis on connected graphs, we show logarithmic average mixing time for randomly perturbed graphs of bounded degeneracy. A particular instance is the Newman-Watts small-world model. Second, we show logarithmic average mixing time for supercritically percolated expander graphs. When the host graph is complete, this application gives an alternative proof that the average mixing time of the giant component in the supercritical Erd\H{o}s-R\'enyi graph is logarithmic.
Multiple-choice reading and listening comprehension tests are an important part of language assessment. Content creators for standard educational tests need to carefully curate questions that assess the comprehension abilities of candidates taking the tests. However, recent work has shown that a large number of questions in general multiple-choice reading comprehension datasets can be answered without comprehension, by leveraging world knowledge instead. This work investigates how much of a contextual passage needs to be read in multiple-choice reading based on conversation transcriptions and listening comprehension tests to be able to work out the correct answer. We find that automated reading comprehension systems can perform significantly better than random with partial or even no access to the context passage. These findings offer an approach for content creators to automatically capture the trade-off between comprehension and world knowledge required for their proposed questions.
We study lower bounds for the problem of approximating a one dimensional distribution given (noisy) measurements of its moments. We show that there are distributions on $[-1,1]$ that cannot be approximated to accuracy $\epsilon$ in Wasserstein-1 distance even if we know \emph{all} of their moments to multiplicative accuracy $(1\pm2^{-\Omega(1/\epsilon)})$; this result matches an upper bound of Kong and Valiant [Annals of Statistics, 2017]. To obtain our result, we provide a hard instance involving distributions induced by the eigenvalue spectra of carefully constructed graph adjacency matrices. Efficiently approximating such spectra in Wasserstein-1 distance is a well-studied algorithmic problem, and a recent result of Cohen-Steiner et al. [KDD 2018] gives a method based on accurately approximating spectral moments using $2^{O(1/\epsilon)}$ random walks initiated at uniformly random nodes in the graph. As a strengthening of our main result, we show that improving the dependence on $1/\epsilon$ in this result would require a new algorithmic approach. Specifically, no algorithm can compute an $\epsilon$-accurate approximation to the spectrum of a normalized graph adjacency matrix with constant probability, even when given the transcript of $2^{\Omega(1/\epsilon)}$ random walks of length $2^{\Omega(1/\epsilon)}$ started at random nodes.
Multi-flagellated bacteria utilize the hydrodynamic interaction between their filamentary tails, known as flagella, to swim and change their swimming direction in low Reynolds number flow. This interaction, referred to as bundling and tumbling, is often overlooked in simplified hydrodynamic models such as Resistive Force Theories (RFT). However, for the development of efficient and steerable robots inspired by bacteria, it becomes crucial to exploit this interaction. In this paper, we present the construction of a macroscopic bio-inspired robot featuring two rigid flagella arranged as right-handed helices, along with a cylindrical head. By rotating the flagella in opposite directions, the robot's body can reorient itself through repeatable and controllable tumbling. To accurately model this bi-flagellated mechanism in low Reynolds flow, we employ a coupling of rigid body dynamics and the method of Regularized Stokeslet Segments (RSS). Unlike RFT, RSS takes into account the hydrodynamic interaction between distant filamentary structures. Furthermore, we delve into the exploration of the parameter space to optimize the propulsion and torque of the system. To achieve the desired reorientation of the robot, we propose a tumble control scheme that involves modulating the rotation direction and speed of the two flagella. By implementing this scheme, the robot can effectively reorient itself to attain the desired attitude. Notably, the overall scheme boasts a simplified design and control as it only requires two control inputs. With our macroscopic framework serving as a foundation, we envision the eventual miniaturization of this technology to construct mobile and controllable micro-scale bacterial robots.
Federated learning is a new distributed machine learning framework, where a bunch of heterogeneous clients collaboratively train a model without sharing training data. In this work, we consider a practical and ubiquitous issue in federated learning: intermittent client availability, where the set of eligible clients may change during the training process. Such an intermittent client availability model would significantly deteriorate the performance of the classical Federated Averaging algorithm (FedAvg for short). We propose a simple distributed non-convex optimization algorithm, called Federated Latest Averaging (FedLaAvg for short), which leverages the latest gradients of all clients, even when the clients are not available, to jointly update the global model in each iteration. Our theoretical analysis shows that FedLaAvg attains the convergence rate of $O(1/(N^{1/4} T^{1/2}))$, achieving a sublinear speedup with respect to the total number of clients. We implement and evaluate FedLaAvg with the CIFAR-10 dataset. The evaluation results demonstrate that FedLaAvg indeed reaches a sublinear speedup and achieves 4.23% higher test accuracy than FedAvg.