亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Known simulations of random access machines (RAMs) or parallel RAMs (PRAMs) by Boolean circuits incur significant polynomial blowup, due to the need to repeatedly simulate accesses to a large main memory. Consider a single modification to Boolean circuits that removes the restriction that circuit graphs are acyclic. We call this the cyclic circuit model. Note, cyclic circuits remain combinational, as they do not allow wire values to change over time. We simulate PRAM with a cyclic circuit, and the blowup from our simulation is only polylogarithmic. Consider a PRAM program $P$ that on a length-$n$ input uses an arbitrary number of processors to manipulate words of size $\Theta(\log n)$ bits and then halts within $W(n)$ work. We construct a size-$O(W(n)\cdot \log^4 n)$ cyclic circuit that simulates $P$. Suppose that on a particular input, $P$ halts in time $T$; our circuit computes the same output within $T \cdot O(\log^3 n)$ gate delay. This implies theoretical feasibility of powerful parallel machines. Cyclic circuits can be implemented in hardware, and our circuit achieves performance within polylog factors of PRAM. Our simulated PRAM synchronizes processors via logical dependencies between wires.

相關內容

Estimating 3D rotations is a common procedure for 3D computer vision. The accuracy depends heavily on the rotation representation. One form of representation -- rotation matrices -- is popular due to its continuity, especially for pose estimation tasks. The learning process usually incorporates orthogonalization to ensure orthonormal matrices. Our work reveals, through gradient analysis, that common orthogonalization procedures based on the Gram-Schmidt process and singular value decomposition will slow down training efficiency. To this end, we advocate removing orthogonalization from the learning process and learning unorthogonalized `Pseudo' Rotation Matrices (PRoM). An optimization analysis shows that PRoM converges faster and to a better solution. By replacing the orthogonalization incorporated representation with our proposed PRoM in various rotation-related tasks, we achieve state-of-the-art results on large-scale benchmarks for human pose estimation.

Semantic part segmentation provides an intricate and interpretable understanding of an object, thereby benefiting numerous downstream tasks. However, the need for exhaustive annotations impedes its usage across diverse object types. This paper focuses on learning part segmentation from synthetic animals, leveraging the Skinned Multi-Animal Linear (SMAL) models to scale up existing synthetic data generated by computer-aided design (CAD) animal models. Compared to CAD models, SMAL models generate data with a wider range of poses observed in real-world scenarios. As a result, our first contribution is to construct a synthetic animal dataset of tigers and horses with more pose diversity, termed Synthetic Animal Parts (SAP). We then benchmark Syn-to-Real animal part segmentation from SAP to PartImageNet, namely SynRealPart, with existing semantic segmentation domain adaptation methods and further improve them as our second contribution. Concretely, we examine three Syn-to-Real adaptation methods but observe relative performance drop due to the innate difference between the two tasks. To address this, we propose a simple yet effective method called Class-Balanced Fourier Data Mixing (CB-FDM). Fourier Data Mixing aligns the spectral amplitudes of synthetic images with real images, thereby making the mixed images have more similar frequency content to real images. We further use Class-Balanced Pseudo-Label Re-Weighting to alleviate the imbalanced class distribution. We demonstrate the efficacy of CB-FDM on SynRealPart over previous methods with significant performance improvements. Remarkably, our third contribution is to reveal that the learned parts from synthetic tiger and horse are transferable across all quadrupeds in PartImageNet, further underscoring the utility and potential applications of animal part segmentation.

The variability in EEG signals between different individuals poses a significant challenge when implementing brain-computer interfaces (BCI). Commonly proposed solutions to this problem include deep learning models, due to their increased capacity and generalization, as well as explicit domain adaptation techniques. Here, we introduce the Latent Alignment method that won the Benchmarks for EEG Transfer Learning (BEETL) competition and present its formulation as a deep set applied on the set of trials from a given subject. Its performance is compared to recent statistical domain adaptation techniques under various conditions. The experimental paradigms include motor imagery (MI), oddball event-related potentials (ERP) and sleep stage classification, where different well-established deep learning models are applied on each task. Our experimental results show that performing statistical distribution alignment at later stages in a deep learning model is beneficial to the classification accuracy, yielding the highest performance for our proposed method. We further investigate practical considerations that arise in the context of using deep learning and statistical alignment for EEG decoding. In this regard, we study class-discriminative artifacts that can spuriously improve results for deep learning models, as well as the impact of class-imbalance on alignment. We delineate a trade-off relationship between increased classification accuracy when alignment is performed at later modeling stages, and susceptibility to class-imbalance in the set of trials that the statistics are computed on.

We propose to extract meaning representations from autoregressive language models by considering the distribution of all possible trajectories extending an input text. This strategy is prompt-free, does not require fine-tuning, and is applicable to any pre-trained autoregressive model. Moreover, unlike vector-based representations, distribution-based representations can also model asymmetric relations (e.g., direction of logical entailment, hypernym/hyponym relations) by using algebraic operations between likelihood functions. These ideas are grounded in distributional perspectives on semantics and are connected to standard constructions in automata theory, but to our knowledge they have not been applied to modern language models. We empirically show that the representations obtained from large models align well with human annotations, outperform other zero-shot and prompt-free methods on semantic similarity tasks, and can be used to solve more complex entailment and containment tasks that standard embeddings cannot handle. Finally, we extend our method to represent data from different modalities (e.g., image and text) using multimodal autoregressive models. Our code is available at: //github.com/tianyu139/meaning-as-trajectories

We give a construction of public key quantum money, and even a strengthened version called quantum lightning, from abelian group actions, which can in turn be constructed from suitable isogenies over elliptic curves. We prove security in the generic group model for group actions under a plausible computational assumption, and develop a general toolkit for proving quantum security in this model. Along the way, we explore knowledge assumptions and algebraic group actions in the quantum setting, finding significant limitations of these assumptions/models compared to generic group actions.

Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

北京阿比特科技有限公司