亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a static analysis for discovering differentiable or more generally smooth parts of a given probabilistic program, and show how the analysis can be used to improve the pathwise gradient estimator, one of the most popular methods for posterior inference and model learning. Our improvement increases the scope of the estimator from differentiable models to non-differentiable ones without requiring manual intervention of the user; the improved estimator automatically identifies differentiable parts of a given probabilistic program using our static analysis, and applies the pathwise gradient estimator to the identified parts while using a more general but less efficient estimator, called score estimator, for the rest of the program. Our analysis has a surprisingly subtle soundness argument, partly due to the misbehaviours of some target smoothness properties when viewed from the perspective of program analysis designers. For instance, some smoothness properties are not preserved by function composition, and this makes it difficult to analyse sequential composition soundly without heavily sacrificing precision. We formulate five assumptions on a target smoothness property, prove the soundness of our analysis under those assumptions, and show that our leading examples satisfy these assumptions. We also show that by using information from our analysis instantiated for differentiability, our improved gradient estimator satisfies an important differentiability requirement and thus computes the correct estimate on average (i.e., returns an unbiased estimate) under a regularity condition. Our experiments with representative probabilistic programs in the Pyro language show that our static analysis is capable of identifying smooth parts of those programs accurately, and making our improved pathwise gradient estimator exploit all the opportunities for high performance in those programs.

相關內容

Dynamic programming (DP) is one of the fundamental paradigms in algorithm design. However, many DP algorithms have to fill in large DP tables, represented by two-dimensional arrays, which causes at least quadratic running times and space usages. This has led to the development of improved algorithms for special cases when the DPs satisfy additional properties like, e.g., the Monge property or total monotonicity. In this paper, we consider a new condition which assumes (among some other technical assumptions) that the rows of the DP table are monotone. Under this assumption, we introduce a novel data structure for computing $(1+\varepsilon)$-approximate DP solutions in near-linear time and space in the static setting, and with polylogarithmic update times when the DP entries change dynamically. To the best of our knowledge, our new condition is incomparable to previous conditions and is the first which allows to derive dynamic algorithms based on existing DPs. Instead of using two-dimensional arrays to store the DP tables, we store the rows of the DP tables using monotone piecewise constant functions. This allows us to store length-$n$ DP table rows with entries in $[0,W]$ using only polylog$(n,W)$ bits, and to perform operations, such as $(\min,+)$-convolution or rounding, on these functions in polylogarithmic time. We further present several applications of our data structure. For bicriteria versions of $k$-balanced graph partitioning and simultaneous source location, we obtain the first dynamic algorithms with subpolynomial update times, as well as the first static algorithms using only near-linear time and space. Additionally, we obtain the currently fastest algorithm for fully dynamic knapsack.

We prove residual-type a posteriori error estimates in the maximum norm for a linear scalar elliptic convection-diffusion problem that may be singularly perturbed. Similar error analysis in the energy norm by Verf\"{u}rth indicates that a dual norm of the {convective derivative of the} error must be added to the natural energy norm in order for the natural residual estimator to be reliable and efficient. We show that the situation is similar for the maximum norm. In particular, we define a mesh-dependent weighted seminorm of the convective error which functions as a maximum-norm counterpart to the dual norm used in the energy norm setting. The total error is then defined as the sum of this seminorm, the maximum norm of the error, and data oscillation. The natural maximum norm residual error estimator is shown to be equivalent to this total error notion, with constant independent of singular perturbation parameters. These estimates are proved under the assumption that certain natural estimates hold for the Green's function for the problem at hand. Numerical experiments confirm that our estimators effectively capture the maximum-norm error behavior for singularly perturbed problems, and can effectively drive adaptive refinement in order to capture layer phenomena.

This paper investigates the problem of synthesizing proactive defense systems in which the defender can allocate deceptive targets and modify the cost of actions for the attacker who aims to compromise security assets in this system. We model the interaction of the attacker and the system using a formal security model -- a probabilistic attack graph. By allocating fake targets/decoys, the defender aims to distract the attacker from compromising true targets. By increasing the cost of some attack actions, the defender aims to discourage the attacker from committing to certain policies and thereby improve the defense. To optimize the defense given limited decoy resources and operational constraints, we formulate the synthesis problem as a bi-level optimization problem, while the defender designs the system, in anticipation of the attacker's best response given that the attacker has disinformation about the system due to the use of deception. Though the general formulation with bi-level optimization is NP-hard, we show that under certain assumptions, the problem can be transformed into a constrained optimization problem. We proposed an algorithm to approximately solve this constrained optimization problem using a novel incentive-design method for projected gradient ascent. We demonstrate the effectiveness of the proposed method using extensive numerical experiments.

Classical asymptotic theory for statistical inference usually involves calibrating a statistic by fixing the dimension $d$ while letting the sample size $n$ increase to infinity. Recently, much effort has been dedicated towards understanding how these methods behave in high-dimensional settings, where $d$ and $n$ both increase to infinity together. This often leads to different inference procedures, depending on the assumptions about the dimensionality, leaving the practitioner in a bind: given a dataset with 100 samples in 20 dimensions, should they calibrate by assuming $n \gg d$, or $d/n \approx 0.2$? This paper considers the goal of dimension-agnostic inference; developing methods whose validity does not depend on any assumption on $d$ versus $n$. We introduce an approach that uses variational representations of existing test statistics along with sample splitting and self-normalization to produce a new test statistic with a Gaussian limiting distribution, regardless of how $d$ scales with $n$. The resulting statistic can be viewed as a careful modification of degenerate U-statistics, dropping diagonal blocks and retaining off-diagonal blocks. We exemplify our technique for some classical problems including one-sample mean and covariance testing, and show that our tests have minimax rate-optimal power against appropriate local alternatives. In most settings, our cross U-statistic matches the high-dimensional power of the corresponding (degenerate) U-statistic up to a $\sqrt{2}$ factor.

General nonlinear sieve learnings are classes of nonlinear sieves that can approximate nonlinear functions of high dimensional variables much more flexibly than various linear sieves (or series). This paper considers general nonlinear sieve quasi-likelihood ratio (GN-QLR) based inference on expectation functionals of time series data, where the functionals of interest are based on some nonparametric function that satisfy conditional moment restrictions and are learned using multilayer neural networks. While the asymptotic normality of the estimated functionals depends on some unknown Riesz representer of the functional space, we show that the optimally weighted GN-QLR statistic is asymptotically Chi-square distributed, regardless whether the expectation functional is regular (root-$n$ estimable) or not. This holds when the data are weakly dependent beta-mixing condition. We apply our method to the off-policy evaluation in reinforcement learning, by formulating the Bellman equation into the conditional moment restriction framework, so that we can make inference about the state-specific value functional using the proposed GN-QLR method with time series data. In addition, estimating the averaged partial means and averaged partial derivatives of nonparametric instrumental variables and quantile IV models are also presented as leading examples. Finally, a Monte Carlo study shows the finite sample performance of the procedure

It remains an open problem to find the optimal configuration of phase shifts under the discrete constraint for intelligent reflecting surface (IRS) in polynomial time. The above problem is widely believed to be difficult because it is not linked to any known combinatorial problems that can be solved efficiently. The branch-and-bound algorithms and the approximation algorithms constitute the best results in this area. Nevertheless, this work shows that the global optimum can actually be reached in linear time on average in terms of the number of reflective elements (REs) of IRS. The main idea is to geometrically interpret the discrete beamforming problem as choosing the optimal point on the unit circle. Although the number of possible combinations of phase shifts grows exponentially with the number of REs, it turns out that there are only a linear number of circular arcs that possibly contain the optimal point. Furthermore, the proposed algorithm can be viewed as a novel approach to a special case of the discrete quadratic program (QP).

General log-linear models specified by non-negative integer design matrices have a potentially wide range of applications, although using models without the genuine overall effect, that is, ones which cannot be reparameterized to include a normalizing constant, is still rare. The log-linear models without the overall effect arise naturally in practice, and can be handled in a similar manner to models with the overall effect. A novel iterative scaling procedure for the MLE computation under such models is proposed, and its convergence is proved. The results are illustrated using data from a recent clinical study.

The recent thought-provoking paper by Hansen [2022, Econometrica] proved that the Gauss-Markov theorem continues to hold without the requirement that competing estimators are linear in the vector of outcomes. Despite the elegant proof, it was shown by the authors and other researchers that the main result in the earlier version of Hansen's paper does not extend the classic Gauss-Markov theorem because no nonlinear unbiased estimator exists under his conditions. To address the issue, Hansen [2022] added statements in the latest version with new conditions under which nonlinear unbiased estimators exist. Motivated by the lively discussion, we study a fundamental problem: what estimators are unbiased for a given class of linear models? We first review a line of highly relevant work dating back to the 1960s, which, unfortunately, have not drawn enough attention. Then, we introduce notation that allows us to restate and unify results from earlier work and Hansen [2022]. The new framework also allows us to highlight differences among previous conclusions. Lastly, we establish new representation theorems for unbiased estimators under different restrictions on the linear model, allowing the coefficients and covariance matrix to take only a finite number of values, the higher moments of the estimator and the dependent variable to exist, and the error distribution to be discrete, absolutely continuous, or dominated by another probability measure. Our results substantially generalize the claims of parallel commentaries on Hansen [2022] and a remarkable result by Koopmann [1982].

Training a very deep neural network is a challenging task, as the deeper a neural network is, the more non-linear it is. We compare the performances of various preconditioned Langevin algorithms with their non-Langevin counterparts for the training of neural networks of increasing depth. For shallow neural networks, Langevin algorithms do not lead to any improvement, however the deeper the network is and the greater are the gains provided by Langevin algorithms. Adding noise to the gradient descent allows to escape from local traps, which are more frequent for very deep neural networks. Following this heuristic we introduce a new Langevin algorithm called Layer Langevin, which consists in adding Langevin noise only to the weights associated to the deepest layers. We then prove the benefits of Langevin and Layer Langevin algorithms for the training of popular deep residual architectures for image classification.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

北京阿比特科技有限公司