Long-range contextual information is crucial for the semantic segmentation of High-Resolution (HR) Remote Sensing Images (RSIs). However, image cropping operations, commonly used for training neural networks, limit the perception of long-range contexts in large RSIs. To overcome this limitation, we propose a Wide-Context Network (WiCoNet) for the semantic segmentation of HR RSIs. Apart from extracting local features with a conventional CNN, the WiCoNet has an extra context branch to aggregate information from a larger image area. Moreover, we introduce a Context Transformer to embed contextual information from the context branch and selectively project it onto the local features. The Context Transformer extends the Vision Transformer, an emerging kind of neural network, to model the dual-branch semantic correlations. It overcomes the locality limitation of CNNs and enables the WiCoNet to see the bigger picture before segmenting the land-cover/land-use (LCLU) classes. Ablation studies and comparative experiments conducted on several benchmark datasets demonstrate the effectiveness of the proposed method. In addition, we present a new Beijing Land-Use (BLU) dataset. This is a large-scale HR satellite dataset with high-quality and fine-grained reference labels, which can facilitate future studies in this field.
Egocentric 3D human pose estimation (HPE) from images is challenging due to severe self-occlusions and strong distortion introduced by the fish-eye view from the head mounted camera. Although existing works use intermediate heatmap-based representations to counter distortion with some success, addressing self-occlusion remains an open problem. In this work, we leverage information from past frames to guide our self-attention-based 3D HPE estimation procedure -- Ego-STAN. Specifically, we build a spatio-temporal Transformer model that attends to semantically rich convolutional neural network-based feature maps. We also propose feature map tokens: a new set of learnable parameters to attend to these feature maps. Finally, we demonstrate Ego-STAN's superior performance on the xR-EgoPose dataset where it achieves a 30.6% improvement on the overall mean per-joint position error, while leading to a 22% drop in parameters compared to the state-of-the-art.
Recent RGB-D semantic segmentation has motivated research interest thanks to the accessibility of complementary modalities from the input side. Existing works often adopt a two-stream architecture that processes photometric and geometric information in parallel, with few methods explicitly leveraging the contribution of depth cues to adjust the sampling position on RGB images. In this paper, we propose a novel framework to incorporate the depth information in the RGB convolutional neural network (CNN), termed Z-ACN (Depth-Adapted CNN). Specifically, our Z-ACN generates a 2D depth-adapted offset which is fully constrained by low-level features to guide the feature extraction on RGB images. With the generated offset, we introduce two intuitive and effective operations to replace basic CNN operators: depth-adapted convolution and depth-adapted average pooling. Extensive experiments on both indoor and outdoor semantic segmentation tasks demonstrate the effectiveness of our approach.
The global and local contexts significantly contribute to the integrity of predictions in Salient Object Detection (SOD). Unfortunately, existing methods still struggle to generate complete predictions with fine details. There are two major problems in conventional approaches: first, for global context, high-level CNN-based encoder features cannot effectively catch long-range dependencies, resulting in incomplete predictions. Second, downsampling the ground truth to fit the size of predictions will introduce inaccuracy as the ground truth details are lost during interpolation or pooling. Thus, in this work, we developed a Transformer-based network and framed a supervised task for a branch to learn the global context information explicitly. Besides, we adopt Pixel Shuffle from Super-Resolution (SR) to reshape the predictions back to the size of ground truth instead of the reverse. Thus details in the ground truth are untouched. In addition, we developed a two-stage Context Refinement Module (CRM) to fuse global context and automatically locate and refine the local details in the predictions. The proposed network can guide and correct itself based on the global and local context generated, thus is named, Self-Refined Transformer (SelfReformer). Extensive experiments and evaluation results on five benchmark datasets demonstrate the outstanding performance of the network, and we achieved the state-of-the-art.
Generic Event Boundary Detection (GEBD) aims to detect moments where humans naturally perceive as event boundaries. In this paper, we present Structured Context Transformer (or SC-Transformer) to solve the GEBD task, which can be trained in an end-to-end fashion. Specifically, we use the backbone convolutional neural network (CNN) to extract the features of each video frame. To capture temporal context information of each frame, we design the structure context transformer (SC-Transformer) by re-partitioning input frame sequence. Note that, the overall computation complexity of SC-Transformer is linear to the video length. After that, the group similarities are computed to capture the differences between frames. Then, a lightweight fully convolutional network is used to determine the event boundaries based on the grouped similarity maps. To remedy the ambiguities of boundary annotations, the Gaussian kernel is adopted to preprocess the ground-truth event boundaries to further boost the accuracy. Extensive experiments conducted on the challenging Kinetics-GEBD and TAPOS datasets demonstrate the effectiveness of the proposed method compared to the state-of-the-art methods.
The core of information retrieval (IR) is to identify relevant information from large-scale resources and return it as a ranked list to respond to user's information need. Recently, the resurgence of deep learning has greatly advanced this field and leads to a hot topic named NeuIR (i.e., neural information retrieval), especially the paradigm of pre-training methods (PTMs). Owing to sophisticated pre-training objectives and huge model size, pre-trained models can learn universal language representations from massive textual data, which are beneficial to the ranking task of IR. Since there have been a large number of works dedicating to the application of PTMs in IR, we believe it is the right time to summarize the current status, learn from existing methods, and gain some insights for future development. In this survey, we present an overview of PTMs applied in different components of IR system, including the retrieval component, the re-ranking component, and other components. In addition, we also introduce PTMs specifically designed for IR, and summarize available datasets as well as benchmark leaderboards. Moreover, we discuss some open challenges and envision some promising directions, with the hope of inspiring more works on these topics for future research.
Transformer, an attention-based encoder-decoder architecture, has revolutionized the field of natural language processing. Inspired by this significant achievement, some pioneering works have recently been done on adapting Transformerliked architectures to Computer Vision (CV) fields, which have demonstrated their effectiveness on various CV tasks. Relying on competitive modeling capability, visual Transformers have achieved impressive performance on multiple benchmarks such as ImageNet, COCO, and ADE20k as compared with modern Convolution Neural Networks (CNN). In this paper, we have provided a comprehensive review of over one hundred different visual Transformers for three fundamental CV tasks (classification, detection, and segmentation), where a taxonomy is proposed to organize these methods according to their motivations, structures, and usage scenarios. Because of the differences in training settings and oriented tasks, we have also evaluated these methods on different configurations for easy and intuitive comparison instead of only various benchmarks. Furthermore, we have revealed a series of essential but unexploited aspects that may empower Transformer to stand out from numerous architectures, e.g., slack high-level semantic embeddings to bridge the gap between visual and sequential Transformers. Finally, three promising future research directions are suggested for further investment.
In multi-turn dialog, utterances do not always take the full form of sentences \cite{Carbonell1983DiscoursePA}, which naturally makes understanding the dialog context more difficult. However, it is essential to fully grasp the dialog context to generate a reasonable response. Hence, in this paper, we propose to improve the response generation performance by examining the model's ability to answer a reading comprehension question, where the question is focused on the omitted information in the dialog. Enlightened by the multi-task learning scheme, we propose a joint framework that unifies these two tasks, sharing the same encoder to extract the common and task-invariant features with different decoders to learn task-specific features. To better fusing information from the question and the dialog history in the encoding part, we propose to augment the Transformer architecture with a memory updater, which is designed to selectively store and update the history dialog information so as to support downstream tasks. For the experiment, we employ human annotators to write and examine a large-scale dialog reading comprehension dataset. Extensive experiments are conducted on this dataset, and the results show that the proposed model brings substantial improvements over several strong baselines on both tasks. In this way, we demonstrate that reasoning can indeed help better response generation and vice versa. We release our large-scale dataset for further research.
Textual entailment is a fundamental task in natural language processing. Most approaches for solving the problem use only the textual content present in training data. A few approaches have shown that information from external knowledge sources like knowledge graphs (KGs) can add value, in addition to the textual content, by providing background knowledge that may be critical for a task. However, the proposed models do not fully exploit the information in the usually large and noisy KGs, and it is not clear how it can be effectively encoded to be useful for entailment. We present an approach that complements text-based entailment models with information from KGs by (1) using Personalized PageR- ank to generate contextual subgraphs with reduced noise and (2) encoding these subgraphs using graph convolutional networks to capture KG structure. Our technique extends the capability of text models exploiting structural and semantic information found in KGs. We evaluate our approach on multiple textual entailment datasets and show that the use of external knowledge helps improve prediction accuracy. This is particularly evident in the challenging BreakingNLI dataset, where we see an absolute improvement of 5-20% over multiple text-based entailment models.
Substantial efforts have been devoted more recently to presenting various methods for object detection in optical remote sensing images. However, the current survey of datasets and deep learning based methods for object detection in optical remote sensing images is not adequate. Moreover, most of the existing datasets have some shortcomings, for example, the numbers of images and object categories are small scale, and the image diversity and variations are insufficient. These limitations greatly affect the development of deep learning based object detection methods. In the paper, we provide a comprehensive review of the recent deep learning based object detection progress in both the computer vision and earth observation communities. Then, we propose a large-scale, publicly available benchmark for object DetectIon in Optical Remote sensing images, which we name as DIOR. The dataset contains 23463 images and 192472 instances, covering 20 object classes. The proposed DIOR dataset 1) is large-scale on the object categories, on the object instance number, and on the total image number; 2) has a large range of object size variations, not only in terms of spatial resolutions, but also in the aspect of inter- and intra-class size variability across objects; 3) holds big variations as the images are obtained with different imaging conditions, weathers, seasons, and image quality; and 4) has high inter-class similarity and intra-class diversity. The proposed benchmark can help the researchers to develop and validate their data-driven methods. Finally, we evaluate several state-of-the-art approaches on our DIOR dataset to establish a baseline for future research.
In this paper, we focus on three problems in deep learning based medical image segmentation. Firstly, U-net, as a popular model for medical image segmentation, is difficult to train when convolutional layers increase even though a deeper network usually has a better generalization ability because of more learnable parameters. Secondly, the exponential ReLU (ELU), as an alternative of ReLU, is not much different from ReLU when the network of interest gets deep. Thirdly, the Dice loss, as one of the pervasive loss functions for medical image segmentation, is not effective when the prediction is close to ground truth and will cause oscillation during training. To address the aforementioned three problems, we propose and validate a deeper network that can fit medical image datasets that are usually small in the sample size. Meanwhile, we propose a new loss function to accelerate the learning process and a combination of different activation functions to improve the network performance. Our experimental results suggest that our network is comparable or superior to state-of-the-art methods.