Machine learning (ML) algorithms are gaining increased importance in many academic and industrial applications, and such algorithms are, accordingly, becoming common components in computer science curricula. Learning ML is challenging not only due to its complex mathematical and algorithmic aspects, but also due to a) the complexity of using correctly these algorithms in the context of real-life situations and b) the understanding of related social and ethical issues. Cognitive biases are phenomena of the human brain that may cause erroneous perceptions and irrational decision-making processes. As such, they have been researched thoroughly in the context of cognitive psychology and decision making; they do, however, have important implications for computer science education as well. One well-known cognitive bias, first described by Kahneman and Tversky, is the base rate neglect bias, according to which humans fail to consider the base rate of the underlaying phenomena when evaluating conditional probabilities. In this paper, we explore the expression of the base rate neglect bias in ML education. Specifically, we show that about one third of students in an Introduction to ML course, from varied backgrounds (computer science students and teachers, data science, engineering, social science and digital humanities), fail to correctly evaluate ML algorithm performance due to the base rate neglect bias. This failure rate should alert educators and promote the development of new pedagogical methods for teaching ML algorithm performance.
Comparing the functional behavior of neural network models, whether it is a single network over time or two (or more networks) during or post-training, is an essential step in understanding what they are learning (and what they are not), and for identifying strategies for regularization or efficiency improvements. Despite recent progress, e.g., comparing vision transformers to CNNs, systematic comparison of function, especially across different networks, remains difficult and is often carried out layer by layer. Approaches such as canonical correlation analysis (CCA) are applicable in principle, but have been sparingly used so far. In this paper, we revisit a (less widely known) from statistics, called distance correlation (and its partial variant), designed to evaluate correlation between feature spaces of different dimensions. We describe the steps necessary to carry out its deployment for large scale models -- this opens the door to a surprising array of applications ranging from conditioning one deep model w.r.t. another, learning disentangled representations as well as optimizing diverse models that would directly be more robust to adversarial attacks. Our experiments suggest a versatile regularizer (or constraint) with many advantages, which avoids some of the common difficulties one faces in such analyses. Code is at //github.com/zhenxingjian/Partial_Distance_Correlation.
Novel class discovery (NCD) aims at learning a model that transfers the common knowledge from a class-disjoint labelled dataset to another unlabelled dataset and discovers new classes (clusters) within it. Many methods have been proposed as well as elaborate training pipelines and appropriate objectives and considerably boosted the performance on NCD tasks. Despite all this, we find that the existing methods do not sufficiently take advantage of the essence of the NCD setting. To this end, in this paper, we propose to model both inter-class and intra-class constraints in NCD based on the symmetric Kullback-Leibler divergence (sKLD). Specifically, we propose an inter-class sKLD constraint to effectively exploit the disjoint relationship between labelled and unlabelled classes, enforcing the separability for different classes in the embedding space. In addition, we present an intra-class sKLD constraint to explicitly constrain the intra-relationship between samples and their augmentations and ensure the stability of the training process at the same time. We conduct extensive experiments on the popular CIFAR10, CIFAR100 and ImageNet benchmarks and successfully demonstrate that our method can establish a new state of the art and can achieve significantly performance improvements, e.g., 3.6\%/3.7\% clustering accuracy improvements on CIFAR100-50 dataset split under the task-aware/-agnostic evaluation protocol, over previous state-of-the-art methods.
In this study we consider unconditionally non-oscillatory, high order implicit time marching based on time-limiters. The first aspect of our work is to propose the high resolution Limited-DIRK3 (L-DIRK3) scheme for conservation laws and convection-diffusion equations in the method-of-lines framework. The scheme can be used in conjunction with an arbitrary high order spatial discretization scheme such as 5th order WENO scheme. It can be shown that the strongly S-stable DIRK3 scheme is not SSP and may introduce strong oscillations under large time step. To overcome the oscillatory nature of DIRK3, the key idea of L-DIRK3 scheme is to apply local time-limiters (K.Duraisamy, J.D.Baeder, J-G Liu), with which the order of accuracy in time is locally dropped to first order in the regions where the evolution of solution is not smooth. In this way, the monotonicity condition is locally satisfied, while a high order of accuracy is still maintained in most of the solution domain. For convenience of applications to systems of equations, we propose a new and simple construction of time-limiters which allows flexible choice of reference quantity with minimal computation cost. Another key aspect of our work is to extend the application of time-limiter schemes to multidimensional problems and convection-diffusion equations. Numerical experiments for scalar/systems of equations in one- and two-dimensions confirm the high resolution and the improved stability of L-DIRK3 under large time steps. Moreover, the results indicate the potential of time-limiter schemes to serve as a generic and convenient methodology to improve the stability of arbitrary DIRK methods.
In mixed-initiative co-creation tasks, where a human and a machine jointly create items, it is valuable for the generative system to provide multiple relevant suggestions to the designer. Quality-diversity algorithms have been commonly used for this, as they can provide diverse suggestions that are representative of salient areas of the solution space, showcasing solutions with both high fitness and different properties that the designer might be interested in. Since these suggestions are what drives the search process, it is important that they provide the right inspiration for the designer, as well as not stray too far away from the search trajectory, i.e., they should be aligned with what the designer is looking for. Additionally, in most cases, many interactions with the system are required before the designer is content with a solution. In this work, we tackle both of these problems with an interactive constrained MAP-Elites system by crafting emitters that are able to learn the preferences of the designer and use them in automated hidden steps. By learning such preferences, we remain aligned with the designer's intentions, and by applying automatic steps, we generate more solutions per system interaction, giving a larger number of choices to the designer and speeding up the search process. We propose a general framework for preference-learning emitters and test it on a procedural content generation task in the video game Space Engineers. In an internal study, we show that preference-learning emitters allow users to more quickly find relevant solutions.
Fast developing artificial intelligence (AI) technology has enabled various applied systems deployed in the real world, impacting people's everyday lives. However, many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc., which not only degrades user experience but erodes the society's trust in all AI systems. In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems. We first introduce the theoretical framework of important aspects of AI trustworthiness, including robustness, generalization, explainability, transparency, reproducibility, fairness, privacy preservation, alignment with human values, and accountability. We then survey leading approaches in these aspects in the industry. To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems, ranging from data acquisition to model development, to development and deployment, finally to continuous monitoring and governance. In this framework, we offer concrete action items to practitioners and societal stakeholders (e.g., researchers and regulators) to improve AI trustworthiness. Finally, we identify key opportunities and challenges in the future development of trustworthy AI systems, where we identify the need for paradigm shift towards comprehensive trustworthy AI systems.
Dialogue systems are a popular Natural Language Processing (NLP) task as it is promising in real-life applications. It is also a complicated task since many NLP tasks deserving study are involved. As a result, a multitude of novel works on this task are carried out, and most of them are deep learning-based due to the outstanding performance. In this survey, we mainly focus on the deep learning-based dialogue systems. We comprehensively review state-of-the-art research outcomes in dialogue systems and analyze them from two angles: model type and system type. Specifically, from the angle of model type, we discuss the principles, characteristics, and applications of different models that are widely used in dialogue systems. This will help researchers acquaint these models and see how they are applied in state-of-the-art frameworks, which is rather helpful when designing a new dialogue system. From the angle of system type, we discuss task-oriented and open-domain dialogue systems as two streams of research, providing insight into the hot topics related. Furthermore, we comprehensively review the evaluation methods and datasets for dialogue systems to pave the way for future research. Finally, some possible research trends are identified based on the recent research outcomes. To the best of our knowledge, this survey is the most comprehensive and up-to-date one at present in the area of dialogue systems and dialogue-related tasks, extensively covering the popular frameworks, topics, and datasets.
Recommender systems exploit interaction history to estimate user preference, having been heavily used in a wide range of industry applications. However, static recommendation models are difficult to answer two important questions well due to inherent shortcomings: (a) What exactly does a user like? (b) Why does a user like an item? The shortcomings are due to the way that static models learn user preference, i.e., without explicit instructions and active feedback from users. The recent rise of conversational recommender systems (CRSs) changes this situation fundamentally. In a CRS, users and the system can dynamically communicate through natural language interactions, which provide unprecedented opportunities to explicitly obtain the exact preference of users. Considerable efforts, spread across disparate settings and applications, have been put into developing CRSs. Existing models, technologies, and evaluation methods for CRSs are far from mature. In this paper, we provide a systematic review of the techniques used in current CRSs. We summarize the key challenges of developing CRSs into five directions: (1) Question-based user preference elicitation. (2) Multi-turn conversational recommendation strategies. (3) Dialogue understanding and generation. (4) Exploitation-exploration trade-offs. (5) Evaluation and user simulation. These research directions involve multiple research fields like information retrieval (IR), natural language processing (NLP), and human-computer interaction (HCI). Based on these research directions, we discuss some future challenges and opportunities. We provide a road map for researchers from multiple communities to get started in this area. We hope this survey helps to identify and address challenges in CRSs and inspire future research.
Few sample learning (FSL) is significant and challenging in the field of machine learning. The capability of learning and generalizing from very few samples successfully is a noticeable demarcation separating artificial intelligence and human intelligence since humans can readily establish their cognition to novelty from just a single or a handful of examples whereas machine learning algorithms typically entail hundreds or thousands of supervised samples to guarantee generalization ability. Despite the long history dated back to the early 2000s and the widespread attention in recent years with booming deep learning technologies, little surveys or reviews for FSL are available until now. In this context, we extensively review 200+ papers of FSL spanning from the 2000s to 2019 and provide a timely and comprehensive survey for FSL. In this survey, we review the evolution history as well as the current progress on FSL, categorize FSL approaches into the generative model based and discriminative model based kinds in principle, and emphasize particularly on the meta learning based FSL approaches. We also summarize several recently emerging extensional topics of FSL and review the latest advances on these topics. Furthermore, we highlight the important FSL applications covering many research hotspots in computer vision, natural language processing, audio and speech, reinforcement learning and robotic, data analysis, etc. Finally, we conclude the survey with a discussion on promising trends in the hope of providing guidance and insights to follow-up researches.
Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.
Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.