亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Text evaluation has historically posed significant challenges, often demanding substantial labor and time cost. With the emergence of large language models (LLMs), researchers have explored LLMs' potential as alternatives for human evaluation. While these single-agent-based approaches show promise, experimental results suggest that further advancements are needed to bridge the gap between their current effectiveness and human-level evaluation quality. Recognizing that best practices of human evaluation processes often involve multiple human annotators collaborating in the evaluation, we resort to a multi-agent debate framework, moving beyond single-agent prompting strategies. The multi-agent-based approach enables a group of LLMs to synergize with an array of intelligent counterparts, harnessing their distinct capabilities and expertise to enhance efficiency and effectiveness in handling intricate tasks. In this paper, we construct a multi-agent referee team called ChatEval to autonomously discuss and evaluate the quality of generated responses from different models on open-ended questions and traditional natural language generation (NLG) tasks. Our analysis shows that ChatEval transcends mere textual scoring, offering a human-mimicking evaluation process for reliable assessments. Our code is available at //github.com/chanchimin/ChatEval.

相關內容

Graph neural networks (GNN) are increasingly used to classify EEG for tasks such as emotion recognition, motor imagery and neurological diseases and disorders. A wide range of methods have been proposed to design GNN-based classifiers. Therefore, there is a need for a systematic review and categorisation of these approaches. We exhaustively search the published literature on this topic and derive several categories for comparison. These categories highlight the similarities and differences among the methods. The results suggest a prevalence of spectral graph convolutional layers over spatial. Additionally, we identify standard forms of node features, with the most popular being the raw EEG signal and differential entropy. Our results summarise the emerging trends in GNN-based approaches for EEG classification. Finally, we discuss several promising research directions, such as exploring the potential of transfer learning methods and appropriate modelling of cross-frequency interactions.

Large Language Models (LLMs) have shown promise in the autonomous driving sector, particularly in generalization and interpretability. We introduce a unique object-level multimodal LLM architecture that merges vectorized numeric modalities with a pre-trained LLM to improve context understanding in driving situations. We also present a new dataset of 160k QA pairs derived from 10k driving scenarios, paired with high quality control commands collected with RL agent and question answer pairs generated by teacher LLM (GPT-3.5). A distinct pretraining strategy is devised to align numeric vector modalities with static LLM representations using vector captioning language data. We also introduce an evaluation metric for Driving QA and demonstrate our LLM-driver's proficiency in interpreting driving scenarios, answering questions, and decision-making. Our findings highlight the potential of LLM-based driving action generation in comparison to traditional behavioral cloning. We make our benchmark, datasets, and model available for further exploration.

The video-language (VL) pretraining has achieved remarkable improvement in multiple downstream tasks. However, the current VL pretraining framework is hard to extend to multiple modalities (N modalities, N>=3) beyond vision and language. We thus propose LanguageBind, taking the language as the bind across different modalities because the language modality is well-explored and contains rich semantics. Specifically, we freeze the language encoder acquired by VL pretraining, then train encoders for other modalities with contrastive learning. As a result, all modalities are mapped to a shared feature space, implementing multi-modal semantic alignment. While LanguageBind ensures that we can extend VL modalities to N modalities, we also need a high-quality dataset with alignment data pairs centered on language. We thus propose VIDAL-10M with Video, Infrared, Depth, Audio and their corresponding Language, naming as VIDAL-10M. In our VIDAL-10M, all videos are from short video platforms with complete semantics rather than truncated segments from long videos, and all the video, depth, infrared, and audio modalities are aligned to their textual descriptions. After pretraining on VIDAL-10M, we outperform ImageBind by 1.2% R@1 on the MSR-VTT dataset with only 15% of the parameters in the zero-shot video-text retrieval, validating the high quality of our dataset. Beyond this, our LanguageBind has achieved great improvement in the zero-shot video, audio, depth, and infrared understanding tasks. For instance, on the LLVIP and NYU-D datasets, LanguageBind outperforms ImageBind-huge with 23.8% and 11.1% top-1 accuracy.

The intersection of vision and language is of major interest due to the increased focus on seamless integration between recognition and reasoning. Scene graphs (SGs) have emerged as a useful tool for multimodal image analysis, showing impressive performance in tasks such as Visual Question Answering (VQA). In this work, we demonstrate that despite the effectiveness of scene graphs in VQA tasks, current methods that utilize idealized annotated scene graphs struggle to generalize when using predicted scene graphs extracted from images. To address this issue, we introduce the SelfGraphVQA framework. Our approach extracts a scene graph from an input image using a pre-trained scene graph generator and employs semantically-preserving augmentation with self-supervised techniques. This method improves the utilization of graph representations in VQA tasks by circumventing the need for costly and potentially biased annotated data. By creating alternative views of the extracted graphs through image augmentations, we can learn joint embeddings by optimizing the informational content in their representations using an un-normalized contrastive approach. As we work with SGs, we experiment with three distinct maximization strategies: node-wise, graph-wise, and permutation-equivariant regularization. We empirically showcase the effectiveness of the extracted scene graph for VQA and demonstrate that these approaches enhance overall performance by highlighting the significance of visual information. This offers a more practical solution for VQA tasks that rely on SGs for complex reasoning questions.

The impressive performances of large language models (LLMs) and their immense potential for commercialization have given rise to serious concerns over the intellectual property (IP) of their training data. In particular, the synthetic texts generated by LLMs may infringe the IP of the data being used to train the LLMs. To this end, it is imperative to be able to (a) identify the data provider who contributed to the generation of a synthetic text by an LLM (source attribution) and (b) verify whether the text data from a data provider has been used to train an LLM (data provenance). In this paper, we show that both problems can be solved by watermarking, i.e., by enabling an LLM to generate synthetic texts with embedded watermarks that contain information about their source(s). We identify the key properties of such watermarking frameworks (e.g., source attribution accuracy, robustness against adversaries), and propose a WAtermarking for Source Attribution (WASA) framework that satisfies these key properties due to our algorithmic designs. Our WASA framework enables an LLM to learn an accurate mapping from the texts of different data providers to their corresponding unique watermarks, which sets the foundation for effective source attribution (and hence data provenance). Extensive empirical evaluations show that our WASA framework achieves effective source attribution and data provenance.

With the rapid development of deep learning, video deraining has experienced significant progress. However, existing video deraining pipelines cannot achieve satisfying performance for scenes with rain layers of complex spatio-temporal distribution. In this paper, we approach video deraining by employing an event camera. As a neuromorphic sensor, the event camera suits scenes of non-uniform motion and dynamic light conditions. We propose an end-to-end learning-based network to unlock the potential of the event camera for video deraining. First, we devise an event-aware motion detection module to adaptively aggregate multi-frame motion contexts using event-aware masks. Second, we design a pyramidal adaptive selection module for reliably separating the background and rain layers by incorporating multi-modal contextualized priors. In addition, we build a real-world dataset consisting of rainy videos and temporally synchronized event streams. We compare our method with extensive state-of-the-art methods on synthetic and self-collected real-world datasets, demonstrating the clear superiority of our method. The code and dataset are available at \url{//github.com/booker-max/EGVD}.

Computer-based decision systems are widely used to automate decisions in many aspects of everyday life, which include sensitive areas like hiring, loaning and even criminal sentencing. A decision pipeline heavily relies on large volumes of historical real-world data for training its models. However, historical training data often contains gender, racial or other biases which are propagated to the trained models influencing computer-based decisions. In this work, we propose a robust methodology that guarantees the removal of unwanted biases while maximally preserving classification utility. Our approach can always achieve this in a model-independent way by deriving from real-world data the asymptotic dataset that uniquely encodes demographic parity and realism. As a proof-of-principle, we deduce from public census records such an asymptotic dataset from which synthetic samples can be generated to train well-established classifiers. Benchmarking the generalization capability of these classifiers trained on our synthetic data, we confirm the absence of any explicit or implicit bias in the computer-aided decision.

Defensive deception is a promising approach for cyberdefense. Although defensive deception is increasingly popular in the research community, there has not been a systematic investigation of its key components, the underlying principles, and its tradeoffs in various problem settings. This survey paper focuses on defensive deception research centered on game theory and machine learning, since these are prominent families of artificial intelligence approaches that are widely employed in defensive deception. This paper brings forth insights, lessons, and limitations from prior work. It closes with an outline of some research directions to tackle major gaps in current defensive deception research.

Knowledge graphs are important resources for many artificial intelligence tasks but often suffer from incompleteness. In this work, we propose to use pre-trained language models for knowledge graph completion. We treat triples in knowledge graphs as textual sequences and propose a novel framework named Knowledge Graph Bidirectional Encoder Representations from Transformer (KG-BERT) to model these triples. Our method takes entity and relation descriptions of a triple as input and computes scoring function of the triple with the KG-BERT language model. Experimental results on multiple benchmark knowledge graphs show that our method can achieve state-of-the-art performance in triple classification, link prediction and relation prediction tasks.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司