亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we provide an optimal additive noise mechanism for database queries with discrete answers on a finite support. The noise provides the minimum error rate for a given $(\epsilon,\delta)$ pair. Popular schemes apply random additive noise with infinite support and then clamp the resulting query response to the desired range. Clamping, unfortunately, compromises the privacy guarantees. Using modulo addition, rather than clamping, we show that, for any $(\epsilon,\delta)$ pair, the optimum additive noise distribution can be obtained by solving a mixed integer linear program (MILP). Having introduced our optimal noise design formulation, we derive closed form solutions for the optimal noise probability mass function (PMF) and the probability of error for two special cases. In our performance studies, we show that the proposed optimal mechanism outperforms state of the art for a given probability of error and for any budget $\epsilon >0$.

相關內容

In this paper we propose a new optimization model for maximum likelihood estimation of causal and invertible ARMA models. Through a set of numerical experiments we show how our proposed model outperforms, both in terms of quality of the fitted model as well as in the computational time, the classical estimation procedure based on Jones reparametrization. We also propose a regularization term in the model and we show how this addition improves the out of sample quality of the fitted model. This improvement is achieved thanks to an increased penalty on models close to the non causality or non invertibility boundary.

We discuss local linear smooth backfitting for additive non-parametric models. This procedure is well known for achieving optimal convergence rates under appropriate smoothness conditions. In particular, it allows for the estimation of each component of an additive model with the same asymptotic accuracy as if the other components were known. The asymptotic discussion of local linear smooth backfitting is rather complex because typically an overwhelming notation is required for a detailed discussion. In this paper we interpret the local linear smooth backfitting estimator as a projection of the data onto a linear space with a suitably chosen semi-norm. This approach simplifies both the mathematical discussion as well as the intuitive understanding of properties of this version of smooth backfitting.

We study the problem of estimating the diagonal of an implicitly given matrix $A$. For such a matrix we have access to an oracle that allows us to evaluate the matrix vector product $Av$. For random variable $v$ drawn from an appropriate distribution, this may be used to return an estimate of the diagonal of the matrix $A$. Whilst results exist for probabilistic guarantees relating to the error of estimates of the trace of $A$, no such results have yet been derived for the diagonal. We analyse the number of queries $s$ required to guarantee that with probability at least $1-\delta$ the estimates of the relative error of the diagonal entries is at most $\varepsilon$. We extend this analysis to the 2-norm of the difference between the estimate and the diagonal of $A$. We prove, discuss and experiment with bounds on the number of queries $s$ required to guarantee a probabilistic bound on the estimates of the diagonal by employing Rademacher and Gaussian random variables. Two sufficient upper bounds on the minimum number of query vectors are proved, extending the work of Avron and Toledo [JACM 58(2)8, 2011], and later work of Roosta-Khorasani and Ascher [FoCM 15, 1187-1212, 2015]. We find that, generally, there is little difference between the two, with convergence going as $O(\log(1/\delta)/\varepsilon^2)$ for individual diagonal elements. However for small $s$, we find that the Rademacher estimator is superior. These results allow us to then extend the ideas of Meyer, Musco, Musco and Woodruff [SOSA, 142-155, 2021], suggesting algorithm Diag++, to speed up the convergence of diagonal estimation from $O(1/\varepsilon^2)$ to $O(1/\varepsilon)$ and make it robust to the spectrum of any positive semi-definite matrix $A$.

In this paper, we propose a variationally consistent technique for decreasing the maximum eigenfrequencies of structural dynamics related finite element formulations. Our approach is based on adding a symmetric positive-definite term to the mass matrix that follows from the integral of the traction jump across element boundaries. The added term is weighted by a small factor, for which we derive a suitable, and simple, element-local parameter choice. For linear problems, we show that our mass-scaling method produces no adverse effects in terms of spatial accuracy and orders of convergence. We illustrate these properties in one, two and three spatial dimension, for quadrilateral elements and triangular elements, and for up to fourth order polynomials basis functions. To extend the method to non-linear problems, we introduce a linear approximation and show that a sizeable increase in critical time-step size can be achieved while only causing minor (even beneficial) influences on the dynamic response.

Numerical solving differential equations with fractional derivatives requires elimination of the singularity which is inherent in the standard definition of fractional derivatives. The method of integration by parts to eliminate this singularity is well known. It allows to solve some equations but increases the order of the equation and sometimes leads to wrong numerical results or instability. We suggest another approach: the elimination of singularity by substitution. It does not increase the order of equation and its numerical implementation provides the opportunity to define fractional derivative as the limit of discretization. We present a sufficient condition for the substitution-generated difference approximation to be well-conditioned. We demonstrate how some equations can be solved using this method with full confidence that the solution is accurate with at least second order of approximation.

In this work, we propose a simple yet generic preconditioned Krylov subspace method for a large class of nonsymmetric block Toeplitz all-at-once systems arising from discretizing evolutionary partial differential equations. Namely, our main result is a novel symmetric positive definite preconditioner, which can be efficiently diagonalized by the discrete sine transform matrix. More specifically, our approach is to first permute the original linear system to obtain a symmetric one, and subsequently develop a desired preconditioner based on the spectral symbol of the modified matrix. Then, we show that the eigenvalues of the preconditioned matrix sequences are clustered around $\pm 1$, which entails rapid convergence, when the minimal residual method is devised. Alternatively, when the conjugate gradient method on normal equations is used, we show that our preconditioner is effective in the sense that the eigenvalues of the preconditioned matrix sequence are clustered around the unity. An extension of our proposed preconditioned method is given for high-order backward difference time discretization schemes, which applies on a wide range of time-dependent equations. Numerical examples are given to demonstrate the effectiveness of our proposed preconditioner, which consistently outperforms an existing block circulant preconditioner discussed in the relevant literature.

Alternating Direction Method of Multipliers (ADMM) is a widely used tool for machine learning in distributed settings, where a machine learning model is trained over distributed data sources through an interactive process of local computation and message passing. Such an iterative process could cause privacy concerns of data owners. The goal of this paper is to provide differential privacy for ADMM-based distributed machine learning. Prior approaches on differentially private ADMM exhibit low utility under high privacy guarantee and often assume the objective functions of the learning problems to be smooth and strongly convex. To address these concerns, we propose a novel differentially private ADMM-based distributed learning algorithm called DP-ADMM, which combines an approximate augmented Lagrangian function with time-varying Gaussian noise addition in the iterative process to achieve higher utility for general objective functions under the same differential privacy guarantee. We also apply the moments accountant method to bound the end-to-end privacy loss. The theoretical analysis shows that DP-ADMM can be applied to a wider class of distributed learning problems, is provably convergent, and offers an explicit utility-privacy tradeoff. To our knowledge, this is the first paper to provide explicit convergence and utility properties for differentially private ADMM-based distributed learning algorithms. The evaluation results demonstrate that our approach can achieve good convergence and model accuracy under high end-to-end differential privacy guarantee.

We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.

We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司