This paper introduces two novel approaches for Online Multi-Task Learning (MTL) Regression Problems. We employ a high performance graph-based MTL formulation and develop two alternative recursive versions based on the Weighted Recursive Least Squares (WRLS) and the Online Sparse Least Squares Support Vector Regression (OSLSSVR) strategies. Adopting task-stacking transformations, we demonstrate the existence of a single matrix incorporating the relationship of multiple tasks and providing structural information to be embodied by the MT-WRLS method in its initialization procedure and by the MT-OSLSSVR in its multi-task kernel function. Contrasting the existing literature, which is mostly based on Online Gradient Descent (OGD) or cubic inexact approaches, we achieve exact and approximate recursions with quadratic per-instance cost on the dimension of the input space (MT-WRLS) or on the size of the dictionary of instances (MT-OSLSSVR). We compare our online MTL methods to other contenders in a real-world wind speed forecasting case study, evidencing the significant gain in performance of both proposed approaches.
The Cauchy-Schwarz (CS) divergence was developed by Pr\'{i}ncipe et al. in 2000. In this paper, we extend the classic CS divergence to quantify the closeness between two conditional distributions and show that the developed conditional CS divergence can be simply estimated by a kernel density estimator from given samples. We illustrate the advantages (e.g., rigorous faithfulness guarantee, lower computational complexity, higher statistical power, and much more flexibility in a wide range of applications) of our conditional CS divergence over previous proposals, such as the conditional KL divergence and the conditional maximum mean discrepancy. We also demonstrate the compelling performance of conditional CS divergence in two machine learning tasks related to time series data and sequential inference, namely time series clustering and uncertainty-guided exploration for sequential decision making.
Advancements in adapting deep convolution architectures for Spiking Neural Networks (SNNs) have significantly enhanced image classification performance and reduced computational burdens. However, the inability of Multiplication-Free Inference (MFI) to align with attention and transformer mechanisms, which are critical to superior performance on high-resolution vision tasks, imposing limitations on these gains. To address this, our research explores a new pathway, drawing inspiration from the progress made in Multi-Layer Perceptrons (MLPs). We propose an innovative spiking MLP architecture that uses batch normalization to retain MFI compatibility and introducing a spiking patch encoding layer to enhance local feature extraction capabilities. As a result, we establish an efficient multi-stage spiking MLP network that blends effectively global receptive fields with local feature extraction for comprehensive spike-based computation. Without relying on pre-training or sophisticated SNN training techniques, our network secures a top-1 accuracy of 66.39% on the ImageNet-1K dataset, surpassing the directly trained spiking ResNet-34 by 2.67%. Furthermore, we curtail computational costs, model parameters, and simulation steps. An expanded version of our network compares with the performance of the spiking VGG-16 network with a 71.64% top-1 accuracy, all while operating with a model capacity 2.1 times smaller. Our findings highlight the potential of our deep SNN architecture in effectively integrating global and local learning abilities. Interestingly, the trained receptive field in our network mirrors the activity patterns of cortical cells. Source codes are publicly accessible at //github.com/EMI-Group/mixer-snn.
This paper presents a novel learning approach for Dubins Traveling Salesman Problems(DTSP) with Neighborhood (DTSPN) to quickly produce a tour of a non-holonomic vehicle passing through neighborhoods of given task points. The method involves two learning phases: initially, a model-free reinforcement learning approach leverages privileged information to distill knowledge from expert trajectories generated by the LinKernighan heuristic (LKH) algorithm. Subsequently, a supervised learning phase trains an adaptation network to solve problems independently of privileged information. Before the first learning phase, a parameter initialization technique using the demonstration data was also devised to enhance training efficiency. The proposed learning method produces a solution about 50 times faster than LKH and substantially outperforms other imitation learning and RL with demonstration schemes, most of which fail to sense all the task points.
This paper introduces the "Uncertainty-aware Mixture of Experts" (uMoE), a novel solution aimed at addressing aleatoric uncertainty within Neural Network (NN) based predictive models. While existing methodologies primarily concentrate on managing uncertainty during inference, uMoE uniquely embeds uncertainty into the training phase. Employing a "Divide and Conquer" strategy, uMoE strategically partitions the uncertain input space into more manageable subspaces. It comprises Expert components, individually trained on their respective subspace uncertainties. Overarching the Experts, a Gating Unit, leveraging additional information regarding the distribution of uncertain in-puts across these subspaces, dynamically adjusts the weighting to minimize deviations from ground truth. Our findings demonstrate the superior performance of uMoE over baseline methods in effectively managing data uncertainty. Furthermore, through a comprehensive robustness analysis, we showcase its adaptability to varying uncertainty levels and propose optimal threshold parameters. This innovative approach boasts broad applicability across diverse da-ta-driven domains, including but not limited to biomedical signal processing, autonomous driving, and production quality control.
This paper explores novel strategies to strengthen the security of Hybrid Wireless Body Area Networks (HyWBANs), essential in smart healthcare and Internet of Things (IoT) applications. Recognizing the vulnerability of HyWBAN to sophisticated cyber-attacks, we propose an innovative combination of semantic communications and jamming receivers. This dual-layered security mechanism protects against unauthorized access and data breaches, particularly in scenarios involving in-body to on-body communication channels. We conduct comprehensive laboratory measurements to understand hybrid (radio and optical) communication propagation through biological tissues and utilize these insights to refine a dataset for training a Deep Learning (DL) model. These models, in turn, generate semantic concepts linked to cryptographic keys for enhanced data confidentiality and integrity using a jamming receiver. The proposed model demonstrates a significant reduction in energy consumption compared to traditional cryptographic methods, like Elliptic Curve Diffie-Hellman (ECDH), especially when supplemented with jamming. Our approach addresses the primary security concerns and sets the baseline for future secure biomedical communication systems advancements.
In this paper, we present two novel methods in Network Intrusion Detection Systems (NIDS) using Graph Neural Networks (GNNs). The first approach, Scattering Transform with E-GraphSAGE (STEG), utilizes the scattering transform to conduct multi-resolution analysis of edge feature vectors. This provides a detailed representation that is essential for identifying subtle anomalies in network traffic. The second approach improves node representation by initiating with Node2Vec, diverging from standard methods of using uniform values, thereby capturing a more accurate and holistic network picture. Our methods have shown significant improvements in performance compared to existing state-of-the-art methods in benchmark NIDS datasets.
This paper presents an exhaustive quantitative and qualitative evaluation of Large Language Models (LLMs) for Knowledge Graph (KG) construction and reasoning. We employ eight distinct datasets that encompass aspects including entity, relation and event extraction, link prediction, and question answering. Empirically, our findings suggest that GPT-4 outperforms ChatGPT in the majority of tasks and even surpasses fine-tuned models in certain reasoning and question-answering datasets. Moreover, our investigation extends to the potential generalization ability of LLMs for information extraction, which culminates in the presentation of the Virtual Knowledge Extraction task and the development of the VINE dataset. Drawing on these empirical findings, we further propose AutoKG, a multi-agent-based approach employing LLMs for KG construction and reasoning, which aims to chart the future of this field and offer exciting opportunities for advancement. We anticipate that our research can provide invaluable insights for future undertakings of KG\footnote{Code and datasets will be available in //github.com/zjunlp/AutoKG.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
Bidirectional Encoder Representations from Transformers (BERT) has shown marvelous improvements across various NLP tasks. Recently, an upgraded version of BERT has been released with Whole Word Masking (WWM), which mitigate the drawbacks of masking partial WordPiece tokens in pre-training BERT. In this technical report, we adapt whole word masking in Chinese text, that masking the whole word instead of masking Chinese characters, which could bring another challenge in Masked Language Model (MLM) pre-training task. The model was trained on the latest Chinese Wikipedia dump. We aim to provide easy extensibility and better performance for Chinese BERT without changing any neural architecture or even hyper-parameters. The model is verified on various NLP tasks, across sentence-level to document-level, including sentiment classification (ChnSentiCorp, Sina Weibo), named entity recognition (People Daily, MSRA-NER), natural language inference (XNLI), sentence pair matching (LCQMC, BQ Corpus), and machine reading comprehension (CMRC 2018, DRCD, CAIL RC). Experimental results on these datasets show that the whole word masking could bring another significant gain. Moreover, we also examine the effectiveness of Chinese pre-trained models: BERT, ERNIE, BERT-wwm. We release the pre-trained model (both TensorFlow and PyTorch) on GitHub: //github.com/ymcui/Chinese-BERT-wwm
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.