LiDAR-based place recognition (LPR) plays a pivotal role in autonomous driving, which assists Simultaneous Localization and Mapping (SLAM) systems in reducing accumulated errors and achieving reliable localization. However, existing reviews predominantly concentrate on visual place recognition (VPR) methods. Despite notable advancements in LPR in recent years, there is yet a systematic review dedicated to this field to the best of our knowledge. This paper bridges the gap by providing a comprehensive review of place recognition methods employing LiDAR sensors, thus facilitating and encouraging further research. We commence by delving into the problem formulation of place recognition and exploring existing challenges, describing relations to previous surveys. Subsequently, we conduct an in-depth review of related research, which offers detailed classifications, strengths and weaknesses, and architectures. Finally, we summarize existing datasets, commonly used evaluation metrics, and comprehensive evaluation results from various methods on public datasets. This paper can serve as a valuable tutorial for newcomers entering the realm of place recognition and researchers interested in long-term robot localization. We pledge to maintain an up-to-date project on our website //github.com/ShiPC-AI/LPR-Survey.
Speech processing Universal PERformance Benchmark (SUPERB) is a leaderboard to benchmark the performance of Self-Supervised Learning (SSL) models on various speech processing tasks. However, SUPERB largely considers English speech in its evaluation. This paper presents multilingual SUPERB (ML-SUPERB), covering 143 languages (ranging from high-resource to endangered), and considering both automatic speech recognition and language identification. Following the concept of SUPERB, ML-SUPERB utilizes frozen SSL features and employs a simple framework for multilingual tasks by learning a shallow downstream model. Similar to the SUPERB benchmark, we find speech SSL models can significantly improve performance compared to FBANK features. Furthermore, we find that multilingual models do not always perform better than their monolingual counterparts. We will release ML-SUPERB as a challenge with organized datasets and reproducible training scripts for future multilingual representation research.
Integrated Circuits (ICs) are the target of diverse attacks during their lifetime. Fabrication-time attacks, such as the insertion of Hardware Trojans, can give an adversary access to privileged data and/or the means to corrupt the IC's internal computation. Post-fabrication attacks, where the end-user takes a malicious role, also attempt to obtain privileged information through means such as fault injection and probing. Taking these threats into account and at the same time, this paper proposes a methodology for Security-Aware Layout Synthesis (SALSy), such that ICs can be designed with security in mind in the same manner as power-performance-area (PPA) metrics are considered today, a concept known as security closure. Furthermore, the trade-offs between PPA and security are considered and a chip is fabricated in a 65nm CMOS commercial technology for validation purposes - a feature not seen in previous research on security closure. Measurements on the fabricated ICs indicate that SALSy promotes a modest increase in power in order to achieve significantly improved security metrics.
Structural re-parameterization is a general training scheme for Convolutional Neural Networks (CNNs), which achieves performance improvement without increasing inference cost. As Vision Transformers (ViTs) are gradually surpassing CNNs in various visual tasks, one may question: if a training scheme specifically for ViTs exists that can also achieve performance improvement without increasing inference cost? Recently, Mixture-of-Experts (MoE) has attracted increasing attention, as it can efficiently scale up the capacity of Transformers at a fixed cost through sparsely activated experts. Considering that MoE can also be viewed as a multi-branch structure, can we utilize MoE to implement a ViT training scheme similar to structural re-parameterization? In this paper, we affirmatively answer these questions, with a new general training strategy for ViTs. Specifically, we decouple the training and inference phases of ViTs. During training, we replace some Feed-Forward Networks (FFNs) of the ViT with specially designed, more efficient MoEs that assign tokens to experts by random uniform partition, and perform Experts Weights Averaging (EWA) on these MoEs at the end of each iteration. After training, we convert each MoE into an FFN by averaging the experts, transforming the model back into original ViT for inference. We further provide a theoretical analysis to show why and how it works. Comprehensive experiments across various 2D and 3D visual tasks, ViT architectures, and datasets validate the effectiveness and generalizability of the proposed training scheme. Besides, our training scheme can also be applied to improve performance when fine-tuning ViTs. Lastly, but equally important, the proposed EWA technique can significantly improve the effectiveness of naive MoE in various 2D visual small datasets and 3D visual tasks.
We propose a new setting that relaxes an assumption in the conventional Co-Salient Object Detection (CoSOD) setting by allowing the presence of "noisy images" which do not show the shared co-salient object. We call this new setting Generalised Co-Salient Object Detection (GCoSOD). We propose a novel random sampling based Generalised CoSOD Training (GCT) strategy to distill the awareness of inter-image absence of co-salient objects into CoSOD models. It employs a Diverse Sampling Self-Supervised Learning (DS3L) that, in addition to the provided supervised co-salient label, introduces additional self-supervised labels for noisy images (being null, that no co-salient object is present). Further, the random sampling process inherent in GCT enables the generation of a high-quality uncertainty map highlighting potential false-positive predictions at instance level. To evaluate the performance of CoSOD models under the GCoSOD setting, we propose two new testing datasets, namely CoCA-Common and CoCA-Zero, where a common salient object is partially present in the former and completely absent in the latter. Extensive experiments demonstrate that our proposed method significantly improves the performance of CoSOD models in terms of the performance under the GCoSOD setting as well as the model calibration degrees.
The Reinforcement Learning from Human Feedback (RLHF) plays a pivotal role in shaping the impact of large language models (LLMs), contributing significantly to controlling output toxicity and selecting output styles, particularly as LLMs often harbor misleading content, highlighting the urgency to align them with human values for secure AI systems. The RLHF, characterized by complexity, instability, and sensitivity to hyperparameters, makes the evaluation of the reward model for complex tasks challenging, thereby further complicating the use of Proximal Policy Optimization (PPO). In this paper, we introduce a simple task designed to employ Gloden as a reward model that validates the effectiveness of PPO and inspires it, primarily explaining the task of utilizing PPO to manipulate the tokenizer length of the output generated by the model. Experiments confirm that PPO is not only effective in manipulating the output tokenizer length to a certain extent in this type of task but also exhibits facilitated training once the influence of the reward model effect is excluded, making it an exciting development.
The performance of Large Language Models (LLMs) in reasoning tasks depends heavily on prompt design, with Chain-of-Thought (CoT) and self-consistency being critical methods that enhance this ability. However, these methods do not fully exploit the answers generated by the LLM to guide subsequent responses. This paper proposes a new prompting method, named Progressive-Hint Prompting (PHP), that enables automatic multiple interactions between users and LLMs by using previously generated answers as hints to progressively guide toward the correct answers. PHP is orthogonal to CoT and self-consistency, making it easy to combine with state-of-the-art techniques to further improve performance. We conducted extensive and comprehensive experiments on seven benchmarks. The results show that PHP significantly improves accuracy while remaining highly efficient. For instance, with text-davinci-003, we observed a 4.2% improvement on GSM8K with greedy decoding compared to Complex CoT, and a 46.17% reduction in sample paths with self-consistency. With GPT-4 and PHP, we achieve state-of-the-art performances on SVAMP (89.1% -> 91.9%), GSM8K (92% -> 95.5%), AQuA (76.4% -> 79.9%) and MATH (50.3% -> 53.9%).
Congestion Control (CC) plays a fundamental role in optimizing traffic in Data Center Networks (DCN). Currently, DCNs mainly implement two main CC protocols: DCTCP and DCQCN. Both protocols -- and their main variants -- are based on Explicit Congestion Notification (ECN), where intermediate switches mark packets when they detect congestion. The ECN configuration is thus a crucial aspect on the performance of CC protocols. Nowadays, network experts set static ECN parameters carefully selected to optimize the average network performance. However, today's high-speed DCNs experience quick and abrupt changes that severely change the network state (e.g., dynamic traffic workloads, incast events, failures). This leads to under-utilization and sub-optimal performance. This paper presents GraphCC, a novel Machine Learning-based framework for in-network CC optimization. Our distributed solution relies on a novel combination of Multi-agent Reinforcement Learning (MARL) and Graph Neural Networks (GNN), and it is compatible with widely deployed ECN-based CC protocols. GraphCC deploys distributed agents on switches that communicate with their neighbors to cooperate and optimize the global ECN configuration. In our evaluation, we test the performance of GraphCC under a wide variety of scenarios, focusing on the capability of this solution to adapt to new scenarios unseen during training (e.g., new traffic workloads, failures, upgrades). We compare GraphCC with a state-of-the-art MARL-based solution for ECN tuning -- ACC -- and observe that our proposed solution outperforms the state-of-the-art baseline in all of the evaluation scenarios, showing improvements up to $20\%$ in Flow Completion Time as well as significant reductions in buffer occupancy ($38.0-85.7\%$).
Constituency parsing plays a fundamental role in advancing natural language processing (NLP) tasks. However, training an automatic syntactic analysis system for ancient languages solely relying on annotated parse data is a formidable task due to the inherent challenges in building treebanks for such languages. It demands extensive linguistic expertise, leading to a scarcity of available resources. To overcome this hurdle, cross-lingual transfer techniques which require minimal or even no annotated data for low-resource target languages offer a promising solution. In this study, we focus on building a constituency parser for $\mathbf{M}$iddle $\mathbf{H}$igh $\mathbf{G}$erman $\mathbf{MHG}$ under realistic conditions, where no annotated MHG treebank is available for training. In our approach, we leverage the linguistic continuity and structural similarity between MHG and $\mathbf{M}$odern $\mathbf{G}$erman $\mathbf{MG}$, along with the abundance of MG treebank resources. Specifically, by employing the $\mathit{delexicalization}$ method, we train a constituency parser on MG parse datasets and perform cross-lingual transfer to MHG parsing. Our delexicalized constituency parser demonstrates remarkable performance on the MHG test set, achieving an F1-score of 67.3%. It outperforms the best zero-shot cross-lingual baseline by a margin of 28.6% points. These encouraging results underscore the practicality and potential for automatic syntactic analysis in other ancient languages that face similar challenges as MHG.
Despite the recent progress in Graph Neural Networks (GNNs), it remains challenging to explain the predictions made by GNNs. Existing explanation methods mainly focus on post-hoc explanations where another explanatory model is employed to provide explanations for a trained GNN. The fact that post-hoc methods fail to reveal the original reasoning process of GNNs raises the need of building GNNs with built-in interpretability. In this work, we propose Prototype Graph Neural Network (ProtGNN), which combines prototype learning with GNNs and provides a new perspective on the explanations of GNNs. In ProtGNN, the explanations are naturally derived from the case-based reasoning process and are actually used during classification. The prediction of ProtGNN is obtained by comparing the inputs to a few learned prototypes in the latent space. Furthermore, for better interpretability and higher efficiency, a novel conditional subgraph sampling module is incorporated to indicate which part of the input graph is most similar to each prototype in ProtGNN+. Finally, we evaluate our method on a wide range of datasets and perform concrete case studies. Extensive results show that ProtGNN and ProtGNN+ can provide inherent interpretability while achieving accuracy on par with the non-interpretable counterparts.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.