亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Video colorization, aiming at obtaining colorful and plausible results from grayish frames, has aroused a lot of interest recently. Nevertheless, how to maintain temporal consistency while keeping the quality of colorized results remains challenging. To tackle the above problems, we present a Histogram-guided Video Colorization with Spatial-Temporal connection structure (named ST-HVC). To fully exploit the chroma and motion information, the joint flow and histogram module is tailored to integrate the histogram and flow features. To manage the blurred and artifact, we design a combination scheme attending to temporal detail and flow feature combination. We further recombine the histogram, flow and sharpness features via a U-shape network. Extensive comparisons are conducted with several state-of-the-art image and video-based methods, demonstrating that the developed method achieves excellent performance both quantitatively and qualitatively in two video datasets.

相關內容

Modern sampling-based motion planning algorithms typically take between hundreds of milliseconds to dozens of seconds to find collision-free motions for high degree-of-freedom problems. This paper presents performance improvements of more than 500x over the state-of-the-art, bringing planning times into the range of microseconds and solution rates into the range of kilohertz, without specialized hardware. Our key insight is how to exploit fine-grained parallelism within sampling-based planners, providing generality-preserving algorithmic improvements to any such planner and significantly accelerating critical subroutines, such as forward kinematics and collision checking. We demonstrate our approach over a diverse set of challenging, realistic problems for complex robots ranging from 7 to 14 degrees-of-freedom. Moreover, we show that our approach does not require high-power hardware by also evaluating on a low-power single-board computer. The planning speeds demonstrated are fast enough to reside in the range of control frequencies and open up new avenues of motion planning research.

Currently, low-resolution image recognition is confronted with a significant challenge in the field of intelligent traffic perception. Compared to high-resolution images, low-resolution images suffer from small size, low quality, and lack of detail, leading to a notable decrease in the accuracy of traditional neural network recognition algorithms. The key to low-resolution image recognition lies in effective feature extraction. Therefore, this paper delves into the fundamental dimensions of residual modules and their impact on feature extraction and computational efficiency. Based on experiments, we introduce a dual-branch residual network structure that leverages the basic architecture of residual networks and a common feature subspace algorithm. Additionally, it incorporates the utilization of intermediate-layer features to enhance the accuracy of low-resolution image recognition. Furthermore, we employ knowledge distillation to reduce network parameters and computational overhead. Experimental results validate the effectiveness of this algorithm for low-resolution image recognition in traffic environments.

We introduce RotateIt, a system that enables fingertip-based object rotation along multiple axes by leveraging multimodal sensory inputs. Our system is trained in simulation, where it has access to ground-truth object shapes and physical properties. Then we distill it to operate on realistic yet noisy simulated visuotactile and proprioceptive sensory inputs. These multimodal inputs are fused via a visuotactile transformer, enabling online inference of object shapes and physical properties during deployment. We show significant performance improvements over prior methods and the importance of visual and tactile sensing.

Viewport prediction is a crucial aspect of tile-based 360 video streaming system. However, existing trajectory based methods lack of robustness, also oversimplify the process of information construction and fusion between different modality inputs, leading to the error accumulation problem. In this paper, we propose a tile classification based viewport prediction method with Multi-modal Fusion Transformer, namely MFTR. Specifically, MFTR utilizes transformer-based networks to extract the long-range dependencies within each modality, then mine intra- and inter-modality relations to capture the combined impact of user historical inputs and video contents on future viewport selection. In addition, MFTR categorizes future tiles into two categories: user interested or not, and selects future viewport as the region that contains most user interested tiles. Comparing with predicting head trajectories, choosing future viewport based on tile's binary classification results exhibits better robustness and interpretability. To evaluate our proposed MFTR, we conduct extensive experiments on two widely used PVS-HM and Xu-Gaze dataset. MFTR shows superior performance over state-of-the-art methods in terms of average prediction accuracy and overlap ratio, also presents competitive computation efficiency.

We introduce Doppler time-of-flight (D-ToF) rendering, an extension of ToF rendering for dynamic scenes, with applications in simulating D-ToF cameras. D-ToF cameras use high-frequency modulation of illumination and exposure, and measure the Doppler frequency shift to compute the radial velocity of dynamic objects. The time-varying scene geometry and high-frequency modulation functions used in such cameras make it challenging to accurately and efficiently simulate their measurements with existing ToF rendering algorithms. We overcome these challenges in a twofold manner: To achieve accuracy, we derive path integral expressions for D-ToF measurements under global illumination and form unbiased Monte Carlo estimates of these integrals. To achieve efficiency, we develop a tailored time-path sampling technique that combines antithetic time sampling with correlated path sampling. We show experimentally that our sampling technique achieves up to two orders of magnitude lower variance compared to naive time-path sampling. We provide an open-source simulator that serves as a digital twin for D-ToF imaging systems, allowing imaging researchers, for the first time, to investigate the impact of modulation functions, material properties, and global illumination on D-ToF imaging performance.

Fairness is a widely discussed topic in recommender systems, but its practical implementation faces challenges in defining sensitive features while maintaining recommendation accuracy. We propose feature fairness as the foundation to achieve equitable treatment across diverse groups defined by various feature combinations. This improves overall accuracy through balanced feature generalizability. We introduce unbiased feature learning through adversarial training, using adversarial perturbation to enhance feature representation. The adversaries improve model generalization for under-represented features. We adapt adversaries automatically based on two forms of feature biases: frequency and combination variety of feature values. This allows us to dynamically adjust perturbation strengths and adversarial training weights. Stronger perturbations are applied to feature values with fewer combination varieties to improve generalization, while higher weights for low-frequency features address training imbalances. We leverage the Adaptive Adversarial perturbation based on the widely-applied Factorization Machine (AAFM) as our backbone model. In experiments, AAFM surpasses strong baselines in both fairness and accuracy measures. AAFM excels in providing item- and user-fairness for single- and multi-feature tasks, showcasing their versatility and scalability. To maintain good accuracy, we find that adversarial perturbation must be well-managed: during training, perturbations should not overly persist and their strengths should decay.

Trajectory optimization under uncertainty underpins a wide range of applications in robotics. However, existing methods are limited in terms of reasoning about sources of epistemic and aleatoric uncertainty, space and time correlations, nonlinear dynamics, and non-convex constraints. In this work, we first introduce a continuous-time planning formulation with an average-value-at-risk constraint over the entire planning horizon. Then, we propose a sample-based approximation that unlocks an efficient and general-purpose algorithm for risk-averse trajectory optimization. We prove that the method is asymptotically optimal and derive finite-sample error bounds. Simulations demonstrate the high speed and reliability of the approach on problems with stochasticity in nonlinear dynamics, obstacle fields, interactions, and terrain parameters.

Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.

Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.

Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.

北京阿比特科技有限公司