A \emph{geometric graph} is a graph whose vertex set is a set of points in general position in the plane, and its edges are straight line segments joining these points. We show that for every integer $k \ge 2$, there exists a constat $c>0$ such that the following holds. The edges of every dense geometric graph can be colored with $k$ colors, such that the number of pairs of edges of the same color that cross is at most $(1/k-c)$ times the total number of pairs of edges that cross. The case when $k=2$ and $G$ is a complete geometric graph, was proved by Aichholzer et al.[\emph{GD} 2019].
Originating in Girard's Linear logic, Ehrhard and Regnier's Taylor expansion of $\lambda$-terms has been broadly used as a tool to approximate the terms of several variants of the $\lambda$-calculus. Many results arise from a Commutation theorem relating the normal form of the Taylor expansion of a term to its B\"ohm tree. This led us to consider extending this formalism to the infinitary $\lambda$-calculus, since the $\Lambda_{\infty}^{001}$ version of this calculus has B\"ohm trees as normal forms and seems to be the ideal framework to reformulate the Commutation theorem. We give a (co-)inductive presentation of $\Lambda_{\infty}^{001}$. We define a Taylor expansion on this calculus, and state that the infinitary $\beta$-reduction can be simulated through this Taylor expansion. The target language is the usual resource calculus, and in particular the resource reduction remains finite, confluent and terminating. Finally, we state the generalised Commutation theorem and use our results to provide simple proofs of some normalisation and confluence properties in the infinitary $\lambda$-calculus.
Group equivariance ensures consistent responses to group transformations of the input, leading to more robust models and enhanced generalization capabilities. However, this property can lead to overly constrained models if the symmetries considered in the group differ from those observed in data. While common methods address this by determining the appropriate level of symmetry at the dataset level, they are limited to supervised settings and ignore scenarios in which multiple levels of symmetry co-exist in the same dataset. For instance, pictures of cars and planes exhibit different levels of rotation, yet both are included in the CIFAR-10 dataset. In this paper, we propose a method able to detect the level of symmetry of each input without the need for labels. To this end, we derive a sufficient and necessary condition to learn the distribution of symmetries in the data. Using the learned distribution, we generate pseudo-labels that allow us to learn the levels of symmetry of each input in a self-supervised manner. We validate the effectiveness of our approach on synthetic datasets with different per-class levels of symmetries e.g. MNISTMultiple, in which digits are uniformly rotated within a class-dependent interval. We demonstrate that our method can be used for practical applications such as the generation of standardized datasets in which the symmetries are not present, as well as the detection of out-of-distribution symmetries during inference. By doing so, both the generalization and robustness of non-equivariant models can be improved. Our code is publicly available at //github.com/aurban0/ssl-sym.
Local fields, and fields complete with respect to a discrete valuation, are essential objects in commutative algebra, with applications to number theory and algebraic geometry. We formalize in Lean the basic theory of discretely valued fields. In particular, we prove that the unit ball with respect to a discrete valuation on a field is a discrete valuation ring and, conversely, that the adic valuation on the field of fractions of a discrete valuation ring is discrete. We define finite extensions of valuations and of discrete valuation rings, and prove some global-to-local results. Building on this general theory, we formalize the abstract definition and some fundamental properties of local fields. As an application, we show that finite extensions of the field $\mathbb{Q}_p$ of $p$-adic numbers and of the field $\mathbb{F}_p(\!(X)\!)$ of Laurent series over $\mathbb{F}_p$ are local fields.
In this paper, we considier the limiting distribution of the maximum interpoint Euclidean distance $M_n=\max _{1 \leq i<j \leq n}\left\|\boldsymbol{X}_i-\boldsymbol{X}_j\right\|$, where $\boldsymbol{X}_1, \boldsymbol{X}_2, \ldots, \boldsymbol{X}_n$ be a random sample coming from a $p$-dimensional population with dependent sub-gaussian components. When the dimension tends to infinity with the sample size, we proves that $M_n^2$ under a suitable normalization asymptotically obeys a Gumbel type distribution. The proofs mainly depend on the Stein-Chen Poisson approximation method and high dimensional Gaussian approximation.
The quantum communication cost of computing a classical sum of distributed sources is studied over a quantum erasure multiple access channel (QEMAC). $K$ classical messages are distributed across $S$ servers, who also share quantum entanglement in advance. Each server $s\in[S]$ manipulates and sends its quantum subsystem $\mathcal{Q}_s$ to the receiver who computes the sum of the messages. The download cost from Server $s\in [S]$ is the logarithm of the dimension of $\mathcal{Q}_s$. The rate $R$ is defined as the number of instances of the sum computed at the receiver, divided by the total download cost from all the servers. In the symmetric setting with $K= {S \choose \alpha} $ messages where each message is replicated among a unique subset of $\alpha$ servers, and the answers from any $\beta$ servers may be erased, we show that the capacity (maximal rate) is $C= \max\left\{ \min \left\{ \frac{2(\alpha-\beta)}{S}, \frac{S-2\beta}{S} \right\}, \frac{\alpha-\beta}{S} \right\}$.
We consider the problem of inferring latent stochastic differential equations (SDEs) with a time and memory cost that scales independently with the amount of data, the total length of the time series, and the stiffness of the approximate differential equations. This is in stark contrast to typical methods for inferring latent differential equations which, despite their constant memory cost, have a time complexity that is heavily dependent on the stiffness of the approximate differential equation. We achieve this computational advancement by removing the need to solve differential equations when approximating gradients using a novel amortization strategy coupled with a recently derived reparametrization of expectations under linear SDEs. We show that, in practice, this allows us to achieve similar performance to methods based on adjoint sensitivities with more than an order of magnitude fewer evaluations of the model in training.
The Poisson-Nernst-Planck (PNP) equations are one of the most effective model for describing electrostatic interactions and diffusion processes in ion solution systems, and have been widely used in the numerical simulations of biological ion channels, semiconductor devices, and nanopore systems. Due to the characteristics of strong coupling, convection dominance, nonlinearity and multiscale, the classic Gummel iteration for the nonlinear discrete system of PNP equations converges slowly or even diverges. We focus on fast algorithms of nonlinear discrete system for the general PNP equations, which have better adaptability, friendliness and efficiency than the Gummel iteration. First, a geometric full approximation storage (FAS) algorithm is proposed to improve the slow convergence speed of the Gummel iteration. Second, an algebraic FAS algorithm is designed, which does not require multi-level geometric information and is more suitable for practical computation compared with the geometric one. Finally, improved algorithms based on the acceleration technique and adaptive method are proposed to solve the problems of excessive coarse grid iterations and insufficient adaptability to the size of computational domain in the algebraic FAS algorithm. The numerical experiments are shown for the geometric, algebraic FAS and improved algorithms respectively to illustrate the effiency of the algorithms.
External and internal convertible (EIC) form-based motion control is one of the effective designs of simultaneously trajectory tracking and balance for underactuated balance robots. Under certain conditions, the EIC-based control design however leads to uncontrolled robot motion. We present a Gaussian process (GP)-based data-driven learning control for underactuated balance robots with the EIC modeling structure. Two GP-based learning controllers are presented by using the EIC structure property. The partial EIC (PEIC)-based control design partitions the robotic dynamics into a fully actuated subsystem and one reduced-order underactuated system. The null-space EIC (NEIC)-based control compensates for the uncontrolled motion in a subspace, while the other closed-loop dynamics are not affected. Under the PEIC- and NEIC-based, the tracking and balance tasks are guaranteed and convergence rate and bounded errors are achieved without causing any uncontrolled motion by the original EIC-based control. We validate the results and demonstrate the GP-based learning control design performance using two inverted pendulum platforms.
We present algorithms for the computation of $\varepsilon$-coresets for $k$-median clustering of point sequences in $\mathbb{R}^d$ under the $p$-dynamic time warping (DTW) distance. Coresets under DTW have not been investigated before, and the analysis is not directly accessible to existing methods as DTW is not a metric. The three main ingredients that allow our construction of coresets are the adaptation of the $\varepsilon$-coreset framework of sensitivity sampling, bounds on the VC dimension of approximations to the range spaces of balls under DTW, and new approximation algorithms for the $k$-median problem under DTW. We achieve our results by investigating approximations of DTW that provide a trade-off between the provided accuracy and amenability to known techniques. In particular, we observe that given $n$ curves under DTW, one can directly construct a metric that approximates DTW on this set, permitting the use of the wealth of results on metric spaces for clustering purposes. The resulting approximations are the first with polynomial running time and achieve a very similar approximation factor as state-of-the-art techniques. We apply our results to produce a practical algorithm approximating $(k,\ell)$-median clustering under DTW.
Recently, Akbari, Eslami, Lievonen, Melnyk, S\"{a}rkij\"{a}rvi, and Suomela (ICALP 2023) studied the locality of graph problems in distributed, sequential, dynamic, and online settings from a unified point of view. They designed a novel $O(\log n)$-locality algorithm for proper 3-coloring bipartite graphs in the $\mathsf{Online}$-$\mathsf{LOCAL}$ model. In this work, we show the optimality of the algorithm by demonstrating a tight $\Omega(\log n)$ locality lower bound which holds even on grids. Moreover, we show a higher $\Omega(\sqrt{n})$ lower bound for 3-coloring toroidal and cylindrical grids.